Google Launches TPU v4 AI Chips

By Todd R. Weiss

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I/O virtual conference this week, but it may have been the most important and awaited news from the event.

With the new release, the company has boosted the performance of its TPU hardware by more than two times over the previous TPU v3 chips, bringing critical new power and promise to machine learning training speeds on the Google Cloud Platform.

“Our compute infrastructure is how we drive and sustain these [AI and ML] advances and Tensor Processing Units are a big part of that,” said Pichai during the almost two-hour-long keynote on May 18 (Tuesday). “Today I’m excited to announce our next generation, the TPU v4. TPUs are connected together into supercomputers, called pods. A single v4 pod contains 4,096 v4 chips, and each pod has 10x the interconnect bandwidth per chip at scale, compared to any other networking technology.”

Google CEO Sundar Pichai announcing TPU v4 at Google I/O 2021.

The resulting computing power of the new TPUs means that one TPU pod of v4 chips can deliver more than one exaflops of floating point performance, said Pichai. The performance metrics are based on Google’s custom floating point format, called “Brain Floating Point Format,” or bfloat16.

The new TPU v4 infrastructure, which will be available to Google Cloud customers later this year, is the fastest system ever deployed at Google, which Pichai called “a historic milestone.”

Creating an exaflops of computing power previously required a custom-built supercomputer, he said. “But we already have many of these deployed today, and we’ll soon have dozens of TPU v4 pods in our datacenters, many of which will be operating at or near 90 percent carbon-free energy. It’s tremendously exciting to see this pace of innovation.”

Google’s previous version TPU 3.0 was unveiled in 2018.

TPUs are Google’s custom-developed application-specific integrated circuits (ASICs) which are used to accelerate ML workloads. Developers can use Google Cloud TPUs and Google’s TensorFlow open source machine learning software library to run their ML workloads. TensorFlow was developed and first released by Google in 2015.

Google Cloud TPU is designed to help researchers, developers and businesses build TensorFlow compute clusters that can use CPUs, GPUs and TPUs as needed. TensorFlow APIs allow users to run replicated models on Cloud TPU hardware, while TensorFlow applications can access TPU nodes from containers, instances or services on Google Cloud.

Several AI analysts were quick to tout the TPU v4 news and what it will mean for enterprises that are faced with constantly growing ML training demands.

“If you’re trying to train a large AI/ML system, and you are using Google’s TensorFlow specifically, this will be a big deal,” Jack E. Gold, president and principal analyst with J. Gold Associates, told EnterpriseAI. “There is never enough processing power when large models are being trained, with some taking days or weeks to run on current systems available in the cloud, and mostly based on highly parallel GPUs. And this can be very costly in terms of cloud costs and power.”

What Google has done in response with its TPUs is to build chips that are highly optimized for TensorFlow-based modeling to expedite the training of models, especially those that must be updated often or that use large data sets, said Gold.

“So, what Google is doing here with its v4 chip is to dramatically increase the compute horsepower available, and reduce time to model significantly,” said Gold. “They are also enabling much larger models to run in a reasonable amount of time. But equally importantly they are reducing the amount of power per model – since if the models run faster, they use less total power. And that’s also good for their cloud datacenters costs, as well as just sheer capacity to handle more users.”

And by using Google’s own TPUs, this is also a move by the company to continue to substitute its own processors for those of other vendors, he said. “Google wants to stay ahead of the others like AWS and Microsoft, that are also building their own accelerators for their AI cloud-based services.”

Gold also noted that since Google does a lot of its own AI/ML/DL modeling that anything the company can do to enhance its own internal needs with additional capabilities is a big win for them. “It’s not just about supporting external customers – it’s also about their own requirements,” he said.

Charles King, principal analyst with Pund-IT, said that Google’s ability to double the performance of the previous v3 chips while also achieving exascale performance in a single V4 pod are both impressive.

“It’s a notable achievement that demonstrates the company’s technical acumen and its willingness to continue funding chip development,” said King. It’s also important for the company’s customers, he added.

“Absolutely, since these new chips will be powering AI-related workloads and services offered in Google Cloud,” said King. “If Google can deliver superior performance at highly competitive prices, it could diminish the value of competitors’ services.”

Holger Mueller, principal analyst at Constellation Research, said the TPU v4 news was “one of the most exciting announcements of Google I/O … as the company builds out its lead with algorithms on silicon with TPU v4.”

With this development, Google keeps building its lead on AI compute over AWS and Microsoft Azure, Mueller said. “[This is the] first architecture to reach an exaflops – and AI needs it. When you do it Google-style… the faster and cheaper AI will win in business and government, including with the military.”

Another analyst, Karl Freund, founder and principal analyst for machine learning, HPC and AI with Cambrian AI Research, said that early benchmarks are promising for the new TPUs.

“TPU v4 looks like a winner, based on early MLPerf benchmarks,” said Freund. “We await final benchmarks which I expect to see this summer when we get closer to the announcement of availability and pricing later this year. It has been a much longer time coming compared to earlier TPUs but may well be worth the wait.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Latest MLPerf Results: Nvidia Shines but Intel, Graphcore, Google Increase Their Presence

June 30, 2021

While Nvidia (again) dominated the latest round of MLPerf training benchmark results, the range of participants expanded. Notably, Google’s forthcoming TPU v4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire