Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

By Oliver Peckham

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of course, go on to become the worst pandemic in a century, speculation on its origins reached a quick – if hasty – conclusion. The virus, many reasoned, must have come from Wuhan’s wet markets – open-air markets featuring seafood and meat, with Wuhan’s in particular featuring many illicit animals (such as bats and pangolins) known to be major disease vectors, with Chinese bats in particular thought to be the origin of the original SARS virus (now known as SARS-CoV-1).

But what if that’s not what happened? Over the last year, a team of Australian researchers worked to decipher the origins of SARS-CoV-2 using molecular dynamics and cloud-based HPC resources – and the results may lend further plausibility to a less natural scenario for those first COVID-19 infections. In a talk for Virtual ICM Seminars (part of Supercomputing Frontiers Europe 2021), David Winkler (a professor at La Trobe University, Monash University and the University of Nottingham) discussed his team’s work.

Mysterious origins

Over the course of the pandemic – now past the year-and-a-half mark – the so-called “lab leak hypothesis,” arguing that SARS-CoV-2 escaped from the Wuhan Institute of Virology, has gained traction: and, increasingly, legitimate traction. What was once considered a far-flung conspiracy theory (and one that was quickly shot down by the World Health Organization) is being revisited by researchers around the world. Most recently, those flames were stoked by revelations that a group of workers from the Wuhan Institute of Virology fell ill in early November – news that was quickly followed by President Biden ordering the U.S. intelligence apparatus to determine the origins of the deadly virus.

Some, however, have been skeptical of the virus’ origins for much longer. “There are a number of questions that arise,” Winkler said. “How did the disease arise? How did that jump from some other species into men? How did it adapt to men once it was in men?”

At first, he, like many, applied Occam’s razor, suspecting bats. “Bats were probably the most likely candidate, because there’s a bat coronavirus that’s quite similar to the current SARS-CoV-2,” he said. “But there needs to be an intermediate animal to bridge between bats and humans.” Without a viable intermediate animal to serve as a bridge, natural zoonotic transmission would appear far less likely – and lab escape, far more.

Beginning early in 2020, Winkler and others were wrangled by Nikolai Petrovsky, a professor in the College of Medicine and Public Health at Flinders University and chairman and research director of the Australian biotech company Vaxine (which itself has developed an as-yet-unreleased COVID-19 vaccine). “Nick is quite an entrepreneurial guy,” Winkler said, “and he got a team of people together working on molecular dynamics and homology modeling and so forth to try to understand what was going on here.” 

“We wanted to look at this question: where did the virus come from?” Winkler said. “No one really knows. There’s been, I guess, a bit of an active effort to not canvas the escape-from-a-lab situation, but I think we need to look at all possibilities because all of them are feasible.”

The binding process between the spike protein and the ACE2 protein. Image courtesy of the researchers.

The researchers decided to approach the question from the angle of binding affinity – that is, testing how well the spike protein from SARS-CoV-2 binds to the ACE2 receptors of host organisms. This, they reasoned, would indicate how likely it was that the virus infected, say, a bat, and in turn how likely it would be for the infected bat to infect a human.

“What’s the susceptibility of these species that have been implicated as being potential intermediates in the transmission?” Winkler said. “And do we have to worry about other animals like companion animals – dogs, cats, birds – and farm animals – like horses, sheep, chickens – being a reservoir for the disease? And potentially for us to pass the disease to them, and then from them to pass back to us, which would be rather disastrous?”

With these questions in mind, the team got to work.

Working from the ground up

“So, what we wanted to do is to look at the very first interaction of the virus with humans,” Winkler said. There was one issue: at the time, no 3D structure of the spike protein was available. So using a viral structure retrieved from NCBI GenBank Database in January 2020, the team built their own. (Later, when such structures became widely available, theirs held up well.)

The next part of the puzzle was the ACE2 receptor – or rather, ACE2 receptors. “[The] human [ACE2 receptor model] was available, of course, but we wanted to look at a range of other animals,” Winkler said. “So we had to build models of the ACE2 proteins for other species, because there were no crystal structures available.” 

The species at hand included not only humans, bats and pangolins, but also monkeys (due to their similarity to humans), pets (dogs and cats), farm animals (horses and cattle), common lab test subjects (civets, ferrets and mice), snakes (the king cobra) and tigers (some of which had been diagnosed with COVID-19). The researchers built models of the ACE2 proteins for all of them. (Subsequently, some of the crystal structures appeared in the protein data bank and the researchers were able to use those more accurate versions – but they did find their own structures to be highly accurate.)

The HPC of it all

With the structures in hand, the researchers turned to the heavy-duty computational elements of the research: simulating the virus’ spike proteins binding to the slew of ACE2 receptors in a realistic manner that accounted for uncertainties. 

They began with HDOCK, a state-of-the-art protein-protein docking package that performed the initial docking calculations. These were then optimized using the 2020 edition of GROMACS, a molecular dynamics package dating back to the early ‘90s that remains one of most popular tools for MD simulations and has been widely applied during the pandemic to study spike protein interactions.

GROMACS is a heavy-duty tool, and performing the intensive simulations required to test the hypothesis necessitated correspondingly high-powered computing. In that regard, the team was supported by Oracle Cloud, which has a wide range of programs in place to support researchers with computational time and expertise. “We had computational resources very kindly given to us by the Oracle Cloud system and the Oracle corporation,” Winkler said. “They were very generous with their computational time.” Oracle supplied the researchers with (presumably Nvidia-powered) GPU nodes, allowing the team to use the GPU-accelerated version of GROMACS.

First, they ran a production run of 500 nanoseconds, simulating the binding between the spike protein and the human ACE2 protein. Confirming that 50 nanoseconds was enough to capture the convergence process, they then simulated 100 nanoseconds for the remainder of the bindings. These were all put through multiple production runs using various random starting seeds to capture the uncertainties in the calculations and models. (“We did this as carefully as we possibly could,” Winkler stressed. “We ran the calculations multiple times and so forth, trying to estimate the accuracy.”) After all these runs, a GROMACS tool was used to calculate the binding energies.

And the vector is…

“Surprisingly, we found that humans had the highest affinity,” Winkler said. “You would expect the virus – like the flu virus or a coronavirus – to adapt to its host over time and become more tightly bound, but this was a structure that we had from the very, very early part of the pandemic before the virus would have had time to adapt to a human host.”

Affinity (blue) and infectivity (orange) by species. Image courtesy of the researchers.

“Pangolins were a little bit lower,” he continued. “Bat was quite a long way down. That was where people considered the virus originated, and it needed to pass through an intermediate animal, which at this stage most likely to be a pangolin based on these calculations. But there are other things, like [the] snake, which was also considered a potential source of the coronavirus, and it was way, way down on the binding energy – so it seems very unlikely.”

The researchers did their best to vet those affinities, correlating them with infectivity by species where such data was available to establish a “reasonable sort of qualitative correlation between the observed permissivity of infection and degree of infection and the binding energies[.]” And, Winkler said, the available data supported the results.

But those results, he said, lack the kind of decisive answer that might have precluded the lab leak hypothesis.

“We didn’t really expect the human to come out on top,” he said. “Because we would have thought that if the virus had come from a bat, probably that would come out to be the top – possibly a pangolin. So based on this information, you can’t really exclude the possibility that the virus could have escaped from a lab. I’m not saying it did, but those calculations suggest that it could have come from a lab.”

Winkler cautioned that the results – which have remained in preprint for many months after submission to several journals – are not evidence of deliberate manipulation of the virus (so-called “gain of function” research) by Chinese scientists, a farther-flung hypothesis which he said seemed to not have much – if any – supporting evidence. Much more likely, he said, was an accidental release, though the pangolin remained a plausible bridge between bats and humans.

In any case, he said, “further deliberations” were needed to move closer to the truth.

Update: the research has now been published in Scientific Reports. To read it, click here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Royalty-free stock illustration ID: 1675260034

Solving Heterogeneous Programming Challenges with SYCL

December 8, 2021

In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short "retirement," considers how SYCL will contribute to a heterogeneous future for C++. Reinde Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Quantum Origin, a service to deliver “completely unpredicta Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

AWS Solution Channel

Introducing AWS HPC Connector for NICE EnginFrame

HPC customers regularly tell us about their excitement when they’re starting to use the cloud for the first time. In conversations, we always want to dig a bit deeper to find out how we can improve those initial experiences and deliver on the potential they see. Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

Royalty-free stock illustration ID: 1675260034

Solving Heterogeneous Programming Challenges with SYCL

December 8, 2021

In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short "retirement," considers how SYC Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Q Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire