What is Thermodynamic Computing and Could It Become Important?

By John Russell

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue of Communications of ACM – “A Vision to Compute like Nature: Thermodynamically.”

Arguing that traditional computing is approaching hard limits for many familiar reasons, Todd Hylton (UCSD), Thomas Conte (Georgia Tech), and Mark Hill (Microsoft) sketch out this idea that it may be possible to harness thermodynamic computing to solve many currently difficult problem sets and to do so with lower power and better performance.

“Animals, plants, bacteria, and proteins solve problems by spontaneously finding energy-efficient configurations that enable them to thrive in complex, resource-constrained environments. For example, proteins fold naturally into a low-energy state in response to their environment,” write the researchers. “In fact, all matter evolves toward low-energy configurations in accord with the Laws of Thermodynamics. For near-equilibrium systems these ideas are well known and have been used extensively in the analysis of computational efficiency and in machine learning techniques,” write the researchers in their paper.

There’s a nice, summary description of the TC notion on a Computing Community Consortium (CCC) blog this week:

What if we designed computing systems to solve problems through a similar process? The writers “envision a thermodynamic computing system (TCS) as a combination of a conventional computing system and novel TC hardware. The conventional computer is a “host” through which users can access the TC and define a problem for the TC to solve. The TC, on the other hand, is an open thermodynamic system directly connected to real-world input potentials (for example, voltages), which drive the adaptation of its internal organization via the transport of charge through it to relieve those potentials.”

In the ACM Viewpoint, the researchers say, “[W]e advocate a new, physically grounded, computational paradigm centered on thermodynamics and an emerging understanding of using thermodynamics to solve problems that we call “Thermodynamic Computing” or TC. Like quantum computers, TCs are distinguished by their ability to employ the underlying physics of the computing substrate to accomplish a task.” (See the figure below from the paper)

The recent Viewpoint is actually the fruit of a 2019 thermodynamic computing workshop sponsored by CCC and organized by the ACM Viewpoint authors. In many ways, their idea sounds somewhat similar to adiabatic quantum computing (e.g. D-Wave Systems) but without the need to maintain quantum state coherence during computation.

“Among existing computing systems, TC is perhaps most similar to neuromorphic computing, except that it replaces rule-driven adaptation and neuro-biological emulation with thermo-physical evolution,” is how the researchers describe TC.

The broad idea – to let a system seek thermodynamic equilibrium to compute – isn’t new and has been steadily advancing, as they note in their paper:

“The idea of using the physics of self-organizing electronic or ionic devices to solve computational problems has shown dramatic progress in recent years. For example, networks of oscillators built from devices exhibiting metal-insulator transitions have been shown to solve computational problems in the NP-hard class. Memristive devices have internal state dynamics driven by complex electronic, ionic, and thermodynamic considerations, which, when integrated into networks, result in large-scale complex dynamics that can be employed in applications such as reservoir computing. Other systems of memristive devices have been shown to implement computational models such as Hopfield networks and to build neural networks capable of unsupervised learning.

“Today we see opportunity to couple these recent experimental results with the new theories of non-equilibrium systems through both existing (for example, Boltzmann Machines) and newer (for example, Thermodynamic Neural Network) model systems.”

The researchers say thermodynamic computing approaches are “particularly well-suited for searching complex energy landscapes that leverage both rapid device fluctuations and the ability to search a large space in parallel, and addressing NP-complete combinatorial optimization problems or sampling many-variable probability distributions.”

They suggest a three-prong TC development roadmap:

  • Using classical computing to model and simulate potential TC advances and, conversely, focusing the lens of TC back on classical systems in order to improve them.
  • Developing nearer-term hybrid computer systems with both classical and thermodynamically-augmented components—for example, thermodynamic “bits,” “neurons,” “synapses,” “gates,” and “noise generators”—and evolving these systems toward greater TC exploitation.
  • Creating systems using complex thermodynamics networks wherein a classical computing system provides an interface to and scaffolding for mesoscale assemblies of interacting, self-organizing components exhibiting complex dynamics and multiscale, continuously evolving structure, either at room temperature or—if quantum effects are key—at very low temperature (milliKelvin).

“At least initially, we expect that TC will enable new computing opportunities rather than replace Classical Computing at what Classical Computing does well (enough), following the disruption path articulated by Christensen. These new opportunities will likely enable orders of magnitude more energy efficiency and the ability to self-organize across scales as an intrinsic part of their operation. These may include self-organizing neuromorphic systems and the simulation of complex physical or biological domains, but the history of technology shows that compelling new applications often emerge after the technology is available.”

The viewpoint is fascinating and best read directly.

Link to ACM Thermodynamic Computing Viewpoint: https://cacm.acm.org/magazines/2021/6/252841-a-vision-to-compute-like-nature/fulltext

Link to CCC blog: https://us5.campaign-archive.com/?e=afe05237d1&u=3403318289e02657adfc0822d&id=7b8ae80cfa

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire