What is Thermodynamic Computing and Could It Become Important?

By John Russell

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue of Communications of ACM – “A Vision to Compute like Nature: Thermodynamically.”

Arguing that traditional computing is approaching hard limits for many familiar reasons, Todd Hylton (UCSD), Thomas Conte (Georgia Tech), and Mark Hill (Microsoft) sketch out this idea that it may be possible to harness thermodynamic computing to solve many currently difficult problem sets and to do so with lower power and better performance.

“Animals, plants, bacteria, and proteins solve problems by spontaneously finding energy-efficient configurations that enable them to thrive in complex, resource-constrained environments. For example, proteins fold naturally into a low-energy state in response to their environment,” write the researchers. “In fact, all matter evolves toward low-energy configurations in accord with the Laws of Thermodynamics. For near-equilibrium systems these ideas are well known and have been used extensively in the analysis of computational efficiency and in machine learning techniques,” write the researchers in their paper.

There’s a nice, summary description of the TC notion on a Computing Community Consortium (CCC) blog this week:

What if we designed computing systems to solve problems through a similar process? The writers “envision a thermodynamic computing system (TCS) as a combination of a conventional computing system and novel TC hardware. The conventional computer is a “host” through which users can access the TC and define a problem for the TC to solve. The TC, on the other hand, is an open thermodynamic system directly connected to real-world input potentials (for example, voltages), which drive the adaptation of its internal organization via the transport of charge through it to relieve those potentials.”

In the ACM Viewpoint, the researchers say, “[W]e advocate a new, physically grounded, computational paradigm centered on thermodynamics and an emerging understanding of using thermodynamics to solve problems that we call “Thermodynamic Computing” or TC. Like quantum computers, TCs are distinguished by their ability to employ the underlying physics of the computing substrate to accomplish a task.” (See the figure below from the paper)

The recent Viewpoint is actually the fruit of a 2019 thermodynamic computing workshop sponsored by CCC and organized by the ACM Viewpoint authors. In many ways, their idea sounds somewhat similar to adiabatic quantum computing (e.g. D-Wave Systems) but without the need to maintain quantum state coherence during computation.

“Among existing computing systems, TC is perhaps most similar to neuromorphic computing, except that it replaces rule-driven adaptation and neuro-biological emulation with thermo-physical evolution,” is how the researchers describe TC.

The broad idea – to let a system seek thermodynamic equilibrium to compute – isn’t new and has been steadily advancing, as they note in their paper:

“The idea of using the physics of self-organizing electronic or ionic devices to solve computational problems has shown dramatic progress in recent years. For example, networks of oscillators built from devices exhibiting metal-insulator transitions have been shown to solve computational problems in the NP-hard class. Memristive devices have internal state dynamics driven by complex electronic, ionic, and thermodynamic considerations, which, when integrated into networks, result in large-scale complex dynamics that can be employed in applications such as reservoir computing. Other systems of memristive devices have been shown to implement computational models such as Hopfield networks and to build neural networks capable of unsupervised learning.

“Today we see opportunity to couple these recent experimental results with the new theories of non-equilibrium systems through both existing (for example, Boltzmann Machines) and newer (for example, Thermodynamic Neural Network) model systems.”

The researchers say thermodynamic computing approaches are “particularly well-suited for searching complex energy landscapes that leverage both rapid device fluctuations and the ability to search a large space in parallel, and addressing NP-complete combinatorial optimization problems or sampling many-variable probability distributions.”

They suggest a three-prong TC development roadmap:

  • Using classical computing to model and simulate potential TC advances and, conversely, focusing the lens of TC back on classical systems in order to improve them.
  • Developing nearer-term hybrid computer systems with both classical and thermodynamically-augmented components—for example, thermodynamic “bits,” “neurons,” “synapses,” “gates,” and “noise generators”—and evolving these systems toward greater TC exploitation.
  • Creating systems using complex thermodynamics networks wherein a classical computing system provides an interface to and scaffolding for mesoscale assemblies of interacting, self-organizing components exhibiting complex dynamics and multiscale, continuously evolving structure, either at room temperature or—if quantum effects are key—at very low temperature (milliKelvin).

“At least initially, we expect that TC will enable new computing opportunities rather than replace Classical Computing at what Classical Computing does well (enough), following the disruption path articulated by Christensen. These new opportunities will likely enable orders of magnitude more energy efficiency and the ability to self-organize across scales as an intrinsic part of their operation. These may include self-organizing neuromorphic systems and the simulation of complex physical or biological domains, but the history of technology shows that compelling new applications often emerge after the technology is available.”

The viewpoint is fascinating and best read directly.

Link to ACM Thermodynamic Computing Viewpoint: https://cacm.acm.org/magazines/2021/6/252841-a-vision-to-compute-like-nature/fulltext

Link to CCC blog: https://us5.campaign-archive.com/?e=afe05237d1&u=3403318289e02657adfc0822d&id=7b8ae80cfa

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Latest MLPerf Results: Nvidia Shines but Intel, Graphcore, Google Increase Their Presence

June 30, 2021

While Nvidia (again) dominated the latest round of MLPerf training benchmark results, the range of participants expanded. Notably, Google’s forthcoming TPU v4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire