Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

By John Russell

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which focuses on quantum software, to form a new, separate company. This follows Honeywell’s entry into commercial quantum computing development space three years ago and its announcement of its first “commercial” system (H-1) in 2020. The deal is expected to close in Q3 2021.

Ostensibly, the merger is intended to create a hardware-plus-full-stack quantum computing company, attracting more investors. In the official release, Honeywell chairman and CEO Darius Adamczyk, said: “Since we first announced Honeywell’s quantum business in 2018, we have heard from many investors who have been eager to invest directly in our leading technologies at the forefront of this exciting and dynamic industry – now, they will be able to do so. The new company will provide the best avenue for us to onboard new, diverse sources of capital at scale that will help drive rapid growth.”

When the deal closes, Honeywell will own 54 percent of the new company and Cambridge shareholders will own 46 percent. However, as Tony Uttley, currently president of the Honeywell quantum business and tapped for the same job at the new company, confirmed in a briefing with HPCwire, by this time next year Honeywell is unlikely to still be the majority owner.

Depending on your perspective, the merger plan is evidence of a potential quantum computing gold rush – at least in terms of a rush to raise capital and, to a lesser extent, to create vertically integrated (hardware and software) entities – or evidence of industry consolidation. It comes at a time when potential investors are sitting on huge hoards of cash (The Wall Street Journal reported yesterday that companies have been stockpiling cash throughout the pandemic and some banks are no longer taking deposits – “Some banks, awash in deposits, are encouraging corporate clients to spend the cash on their businesses or move it elsewhere”)[i] .

The quantum computing development community has been taking notice and seeking to capitalize.

IonQ, another ion trap-based quantum computing company announced plans to go public via the SPAC (Special Purpose Acquisition Company) route in March. Uttley wouldn’t rule out such a move for the new company. Given the promise of quantum computing, the rise of well-funded government quantum initiatives around the world, and cash-rich investors seeking opportunities, a boomlet in funding for quantum companies wouldn’t be surprising. That would be a change from just a few years ago when quantum computing’s technology hurdles and predicted years-long wait for payoff made investors wary. Recently, quantum technology advances and growing public sector attention are changing the quantum expectations landscape.

Veteran quantum watcher Paul Smith-Goodson, senior quantum & AI analyst, Moor Insights & Strategy, said the planned Honeywell-Cambridge merger is a positive step for both companies.

“The deal makes a lot of sense for both HQS and CQC. HQS was limited to only funding provided to it as a business unit of Honeywell International. To compete with the likes of IonQ, who will get $600 million in cash when it goes public, this path is necessary. Additionally, these quantum startups need long term funding to stay in the game for the next five to ten years. It will take that long to move from a few hundred qubits to a few million qubits needed for a fault-tolerant quantum machine suitable for complex computations in a production environment. And, the truth is we really don’t know how yet to do that. We have an idea of how long it will take, but we really don’t know with certainty,” Smith-Goodson told HPCwire.

“The new company will get somewhere around $300 million from Honeywell corporate, and that will help. More importantly, the merger sets up the new company in a position where it can decide if or when it goes public. I suspect that is a large part of the motivation for the merger. Both companies are doing well now, but as a new company it will do even better. After the merger, I expect HQS to release its model H2 quantum computer or increase the number of qubits and more zones in its current H1 model. Also at the same time, I expect CQC to announce a new commercial quantum product shortly after the merger is done. No NDA (confidential knowledge) here, I’m just connecting the dots,” said Smith-Goodson.

While acknowledging that attracting investment is a key objective, Uttley emphasized the end goal is to create and succeed as a quantum computing company. Honeywell and Cambridge have been collaborating for three years and Cambridge has been the single largest user of Honeywell’s quantum systems, said Uttley. Where Honeywell has focused on hardware, Cambridge expertise spans quantum algorithm and application development along with middleware and programming tools.

Uttley said: “We came to a collective realization that if you want to have the best company out there in quantum, the way to do it is to fully integrate, to have a full solution – applications, middleware, operating system, and hardware – that can be collectively designed to go after some of these really critical challenges that are going to be the hallmark of quantum computing.”

He said the merger/spinout approach is new for Honeywell. “This is unique in the history of Honeywell to go and do something like this, where we’ve taken a breakthrough growth initiative (HQS) and said, the right thing to do right at this moment is to actually put it into a position where we can combine it [with a complementary partner], turn it into its own company, set it up with a capital structure immediately by giving it $270 to $300 million of cash, and then allow it to onboard investments.”

Honeywell has set up a structure, said Uttley, to ensure it has continued, significant interaction with the new company. “For example, we have a long-term supply agreement to be able to develop the ion traps using Honeywell’s foundry [which is] part of Honeywell’s aerospace group [for] trap development. Honeywell is also one of our customers right now; we have projects [with Honeywell’s] performance materials, technologies group and Cambridge Quantum Computing using [our] quantum computer to do work in chemistry and novel compounds. We expect that Honeywell will continue to be the best customer of this new company.”

Currently, many qubit technologies (superconducting, ion trap, optical, topological, cold atom) are being developed. Honeywell has bet big on trapped ion tech, which has several advantages, including longer coherence times. Honeywell also sought to leverage its control systems expertise for use with quantum systems. The company embraced quantum volume (QV) – an IBM based quantum performance metric – and has touted its early systems QV ratings. Just this March, Honeywell reported its System Model H1 achieved a QV of 512, a fourfold jump over the QV 128 that H1 had demonstrated at its launch in September 2020, and the highest QV so far of an industry system yet.

Qubit count on the Honeywell systems remain relatively small (10 qubits on System H1) but other significant advances, such as mid-circuit measurement and re-use of qubits are notable. Using this capability, Honeywell developed what it calls the holoQUADS algorithm to run more complex simulations with fewer qubits.

“What holoQUADs was a demonstration of how we can take our trapped ion quantum computer – right now we have 10 qubits – and in this case, we use nine qubits to act like 32 qubits. The way we were able to do that is, using a circuit that would otherwise have required 32 qubits, there were times along the entire length of the computation where you stopped needing a particular qubit. There was nothing else you were going to go do with it. So you can measure it. But now since we’ve measured it, we can actually take that qubit and put it back into a circuit, and we have enough coherence time that we can keep on recycling after we measure them. That’s what this mid-circuit measurement and qubit reuse is all about. You measure the qubit and then can put it back into the circuit somewhere else.”

Cambridge has a wider focus in that its software strategy is to be hardware-agnostic and work with any qubit technology. Its centerpiece product is t|ket⟩, which CQC describes as an “architecture agnostic quantum software stack and ‘best in class’ compiler. t|ket⟩ translates machine independent algorithms into executable circuits, optimizing for physical qubit layout whilst reducing the number of required operations. t|ket⟩’s state of the art qubit scheduling and routing protocol ensures optimal results even in the Noisy Intermediate-Scale Quantum (NISQ) era.”

CQC founder lyas Khan will be CEO of the new company, which is expected to be named when the deal formally completes. CQC also works on algorithm development and recently published a paper on an algorithm to accelerate Monte Carlo calculations on quantum computers.

Uttley contends there are two powerful pieces to the merger story.

“The first is Cambridge, quantum computing is and will continue to be hardware agnostic. So as they do software development in chemistry and machine learning, cybersecurity, it is going to be across multiple platforms and multiple technologies. That will continue. The trapped ion hardware has very particular use cases for which it excels, such at the cybersecurity and chemistry. There are other use cases where other technologies are just adequate or better. One of the things Cambridge Quantum does is think through the logic of what a customer is trying to accomplish, and point where should the job be done. That’s actually part of the power of the platform to be able to say this job should be done on let’s say, IBM’s superconducting system, and this one needs to be done Honeywell,” he said.

“The second point is that if you want to build something that’s going to add value, quickly, it’s not about universal quantum computers. So universality is great [but still distant]. But if you can design architectures that are fit for the application, you can make them extremely efficient. We have the ability now to go from the trap all the way up to the operating system to the combination layer of the compiler and the application. And that doesn’t have to be ubiquitous across every application area; it absolutely won’t be, it’ll be designed to accelerate how fast quantum computing can have an impact in [particular applications] by years.”

To date, Honeywell and Cambridge have said little about who their early users are and what they are working on beyond work with JPMorgan on security issues. Both are already part Microsoft’s Azure Quantum portal. Uttley said they’ve had “dozens” of substantial engagements and cites demonstration projects for “BMW, DHL, and Samsung.”

Stay tuned for the company naming.

[i] https://www.wsj.com/articles/banks-to-companies-no-more-deposits-please-11623238200?mod=hp_lead_pos5

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire