Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

By HPCwire Editorial Team

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company’s HPC strategy. This interview was conducted by email at the beginning of April.

Hi Bill, congratulations on being named a 2021 HPCwire Person to Watch! You joined Google last year to lead their HPC strategy. Please give a brief overview of your role and what you’ve been working on.

Since joining, I’ve spent a fair amount of time simply discovering and learning. Google is a unique company, and I wanted to take the time to get to know its diverse products, technologies, and people. I’ve of course only begun to scratch the surface, but I now feel better equipped to understand the key challenges HPC users face with cloud and the opportunity that Google Cloud has to better serve the HPC community.

An important part of my role is to help drive Google Cloud’s HPC strategy and customer success, and I’m lucky to work with teams inside and beyond Google. I work closely with our product and engineering teams to ensure we have the right roadmap to address existing and emerging HPC use cases. I also spend time bringing HPC user perspective and requirements into the broader Google Cloud product portfolio. I collaborate with our partnership teams, to forge and deepen partnerships within the HPC ecosystem. And, of course, I spend a lot of time with customers, sharing our HPC vision and incorporating their feedback into our plans.

In the last few years, the tier one cloud providers have stepped up their adoption of HPC technologies (and talent!). Why is HPC important to Google, and what is Google Cloud’s differentiation as a provider of HPC in the cloud?

HPC’s impact in tackling the world’s most challenging problems is undeniable, yet it still remains available to relatively few. Google Cloud hopes to address that and bring the power of HPC to everyone via a simple, compatible, and open Cloud. We are focused on both the needs of today’s HPC workloads and on opening new horizons, via powerful Cloud capabilities, such as AI.

To meet the unique needs of HPC workloads, Google Cloud offers several specific machine types, such as compute-optimized instances, which have fixed virtual-to-physical core mapping and OS-visible NUMA architecture, critical to many HPC workloads. We also offer machine types tailored for memory-intensive HPC workloads and GPU-accelerated workloads. We have improved MPI scalability through tuned MPI libraries, HPC-optimized machine images, available 100 Gbps networking, and new placement policies that co-locate compute instances in your application or workload or a job.

Beyond infrastructure, we are making many open source contributions and forming key partnerships in the HPC ecosystem. Our goal is to simplify the deployment of compatible environments on Google Cloud, enabling hybrid HPC environments where applications and workloads run unmodified. We have a number of enhancements planned to make HPC even easier, faster, and more affordable.

It’s notable that Google Cloud is built on the same infrastructure and technologies that power Google’s globally available services, used by 1 billion+ users every day . The extreme demands of our services have driven innovations in scalability, availability, networking, and security that are now available to HPC users worldwide. Google’s private network is among the best, providing superior quality of service, end-to-end encryption, and low latency that enables teams to effectively and confidently collaborate around the world.

And, of course, Google Cloud is helping bring the power of AI to the HPC community.

How do you see the relationship between HPC and AI, both broadly and more specifically at Google?

I think it’s well understood that much of AI can be considered an HPC workload, in that it benefits from high-performance infrastructure. At the same time, AI is a powerful new tool for the HPC community, with scientists, engineers, and others seeking ways to apply AI to gain deeper insight into their HPC simulations, improve their productivity, and even directly accelerate simulations.

Google pioneered the popular TensorFlow machine-learning framework and has broad strengths in AI and analytics. We make these capabilities available, along with highly-tuned infrastructure, to HPC users via Google Cloud. We often hear that HPC users and even HPC centers don’t have a need for round-the-clock AI training. As such, specialized on-premise AI hardware can often lie underutilized. The cloud provides an ideal environment to implement HPC and AI, since the resources can be tailored to the workload, adjusting dynamically as the workflow progresses. With inexpensive cloud archival storage and automated lifecycle management, HPC users no longer face the difficult decision to discard large data sets that might yield future insights.

What new/emerging technologies are you most closely tracking? What trends and/or technologies in high-performance computing (and related fields, such as AI) do you see as particularly relevant for the next five years?

I was actually trained in quantum physics, so I have a keen interest in the fascinating and rapidly-advancing field of quantum computing. While it will likely be many years before the full power of quantum computing is realized, it is interesting to watch the near-term applications being developed. Now is also a good time to consider how quantum computers will be deployed and accessed. Much like supercomputers, I see quantum computers as specialized resources, available primarily through shared HPC centers or the public cloud.

Nearer term, I am watching the rapid advances in silicon packaging and interconnect technology. Just as these advances have allowed the integration of high-bandwidth DRAM on CPUs, I see the potential for new product classes that combine the strengths of CPUs, data-parallel accelerators, and networking. These could drive significant advances in both programmability and performance for HPC.

I’d be remiss if I didn’t admit cloud is an obvious and major trend on my mind. I see a future where the line between workstation and supercomputer disappears, with compute seamlessly scaling to address the problem at hand. We have the exciting opportunity to bring the power of HPC to a whole new class of users, propelling their productivity to new heights.

Outside the professional sphere, what activities, hobbies or travel destinations do you enjoy in your free time?

Outside of work, I enjoy skiing with friends, woodworking, and traveling with my wife, Lisa. We plan to visit Spain, Portugal, and France as soon as it’s safe.

Magro is one of 14 HPCwire People to Watch for 2021. You can read the interviews with the other honorees at this link.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire