Nvidia’s Cambridge-1 Supercomputer Is Now UK’s Fastest Supercomputer

By John Russell

July 6, 2021

Nvidia today formally launched Cambridge-1, its SuperPOD-based supercomputer that is located in the U.K. and dedicated to life sciences research. At nearly 10 petaflops (Rmax) and 400 petaflops AI compute, Cambridge-1 finished 41st on the June Top500 List, is now the fastest supercomputer in the UK, and will be number 12 in Europe, said Nvidia.

Announced last fall, Cambridge-1 is wholly-owned and operated by Nvidia. While it represents a different go-to-market approach from Nvidia’s usual direct sales model, it is in line with Nvidia’s decade-long efforts in healthcare. The system is located at a facility operated by Nvidia partner Kao Data.

Nvidia CEO Jensen Huang is quoted in the official announcement, “Cambridge-1 will empower world-leading researchers in business and academia with the ability to perform their life’s work on the U.K.’s most powerful supercomputer, unlocking clues to disease and treatments at a scale and speed previously impossible in the U.K. The discoveries developed on Cambridge-1 will take shape in the U.K., but the impact will be global, driving groundbreaking research that has the potential to benefit millions around the world.”

Cambridge-1 represents a $100 million investment according to Nvidia, which touted early projects with “AstraZeneca, GSK, Guy’s and St Thomas’ NHS Foundation Trust, King’s College London and Oxford Nanopore Technologies [on] efforts to develop a deeper understanding of brain diseases like dementia, using AI to design new drugs, and improving the accuracy of finding disease-causing variations in human genomes.”

The new system is named for University of Cambridge where Francis Crick and James Watson and their colleagues famously worked on solving the structure of DNA. Leveraging Nvidia’s SuperPOD architecture, it will have 80 DGX A100s, 20 terabytes/sec InfiniBand, 2 petabytes of NVMe memory.

At the announcement last fall, four focus areas were cited:

  • Joint industry research– Solving large-scale healthcare and data-science problems which otherwise could not be tackled due to their size, resulting in improved patient outcomes, increased success rates and decreased overall healthcare costs.
  • University-granted compute time – Access to Nvidia GPU time will be donated as a resource to specific studies to contribute to the hunt for cures.
  • Support AI startups– Nvidia will provide opportunities to learn — and it will collaborate with startups to nurture the next generation and provide early access to AI tools.
  • Educate future AI practitioners– The system will serve as a destination for world-class researchers and provide hands-on experiences to the next generation.

That still seems to be the long-term goal.

Cambridge-1 will use Nvidia’s BlueField2 datacenter processing unit (DPU) technology which is just coming to market now. The more extensive BlueField3 DPU is expected next year. Broadly DPUs act as engines to handle security, networking, and storage management – offloading those tasks usually handled by the host CPU. Nvidia has said BlueField technology is a key enabler of its native cloud supercomputing strategy by enabling secure isolation of users as well as handling housekeeping chores.

To some extent Cambridge-1 is a forerunner example of the cloud-native supercomputer strategy with diverse external users using the same system. Much the time leading to launch, said Nvidia, has been spent working with the initial user organizations to iron out protocols and ensure, for example, compliance with data confidentiality and security requirements from the UK NHS.

No changes or additions to the original Cambridge-1 architecture were announced today, but Nvidia did provide snapshots of early work. Here are brief excerpts from the official announcement:

  • “GSK’s research and development approach includes a focus on genetically validated targets, which are twice as likely to become medicines and now make up more than 70 percent of its research pipeline. To maximize the potential of these insights, GSK has built state-of-the-art capabilities at the intersection of human genetics, functional genomics, and artificial intelligence and machine learning. “Advanced technologies are core to GSK’s R&D approach and help to unlock the potential of large, complex data through predictive modeling at new levels of speed, precision and scale,” said Kim Branson, senior vice president and global head of AI-ML at GSK. “We are pleased to have the opportunity to partner with Nvidia to deliver on GSK’s drug discovery ambition and contribute to the U.K.’s rich life sciences ecosystem — both aims that have patient benefit at the centre.”
  • “King’s College London and Guy’s and St Thomas’ NHS Foundation Trust are using Cambridge-1 to teach AI models to generate synthetic brain images by learning from tens of thousands of MRI brain scans, from various ages and diseases. The ultimate goal is to use this synthetic data model to gain a better understanding of diseases like dementia, stroke, brain cancer and multiple sclerosis and enable earlier diagnosis and treatment.  As this AI synthetic brain model can generate an infinite amount of never-seen brain images with chosen characteristics (age, disease, etc.), it will allow a better and more nuanced understanding of what diseases look like, possibly enabling an earlier and more accurate diagnosis.
  • Oxford Nanopore Technologies’ long-read sequencing technology is being used in more than 100 countries to gain genomic insights across a breadth of research areas — from human and plant health to environmental monitoring and antimicrobial resistance. Oxford Nanopore deploys Nvidia technology in a variety of genomic sequencing platforms to develop AI tools that improve the speed and accuracy of genomic analysis. With access to Cambridge-1, Oxford Nanopore will be able to carry out tasks relating to algorithm improvement in hours rather than days. These improved algorithms will ensure improved genomic accuracy for greater insights and quicker turnaround times in scientists’ hands.

There was a small bit of confusion on the Top500 list which listed the U.S. as the country of record. Nvidia said it was asking the Top500 to change this to the U.K. Presumably the Cambridge-1 would also have an impressive score on the Green500 but Nvidia did not run that benchmark.

In answer to an email query, Nvidia said, “All NVIDIA DGX SuperPOD systems share the same energy efficient design which extends beyond the component DGX systems to the overall data center design including network switches, management servers, rack power distribution units (PDUs), hot or cold aisle airflow containment, and other features. The Green500 list, a common list for comparing energy efficiency of supercomputers, is derived from the Top500 list using optional energy use metrics that can be reported with Top500 submissions.

“NVIDIA did not measure the power usage of Cambridge-1 while running the Top500 test and thus per the Green500 list policy, the system was listed next to the lowest scoring DGX SuperPOD, on older DGX-2H SuperPOD. For comparison purposes, NVIDIA suggests one considers the #5 Green500 entry, which is another NVIDIA owned and operated DGX SuperPOD for which we did measure and submit energy usage for Top500/Green500 rankings.”

It will be interesting to watch not only the results from the important biomedical research being undertaken on Cambridge-1, but also interesting to watch how its list of clients expands and, perhaps, whether the idea of vertically-specialized, Nvidia owned-and-operated supercomputers takes hold.

The formal inauguration will be held tomorrow (Wednesday) at 6am PDT (2pm BST). It will highlight the research to be conducted on Cambridge-1 and is open to the public.

Link to the video event: https://www.nvidia.com/en-us/industries/healthcare-life-sciences/cambridge-1/

Link to Nvidia announcement: https://nvidianews.nvidia.com/news/nvidia-launches-uks-most-powerful-supercomputer-for-research-in-ai-and-healthcare

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire