Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

By Tiffany Trader

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement.

Al Geist, Oak Ridge National Laboratory

Al Geist kicked off ORNL’s Advanced Technologies Section (ATS) webinar series last month by recapping the history of the march toward exascale. As Geist described how the Frontier supercomputer addresses the four primary exascale challenges, he disclosed key information about the anticipated inaugural U.S. exascale computer.

Most notably, Frontier is poised to hit the 20 MW power goal set by DARPA in 2008 by delivering more than 1.5 peak exaflops of performance inside a 29 MW power envelope. Although the once-aspirational target had originally been etched for 2015, until fairly recently, it was not clear that the first crop of exascale supercomputers – set to arrive in the 2021-2023 timeframe – would make the cut. Indeed, it is unclear if they all will, but it is looking like Frontier, using HPE and AMD technologies, will.

Geist is a corporate fellow at and CTO of the Oak Ridge Leadership Computing Facility (OLCF) and the CTO of the Exascale Computing Project. He’s also one of the original developers of PVM (Parallel Virtual Machine) software, a de facto standard for heterogeneous distributed computing.

Geist began his talk with a review of the four major challenges that were set out in the 2008-2009 timeframe, when exascale planning was ramping up within the Department of Energy and its affiliated organizations.

“The four challenges also existed during the petascale regime, but in 2009, we felt there was a serious problem where we might not even be able to build an exascale system,” said Geist. “It wasn’t just that it would be costly, or that it would be hard to program – it may just be impossible.”

Energy consumption loomed large.

“Research papers that came out in 2008 predicted that an exaflop system would consume between 150 to up to 500 megawatts of energy. And the vendors were given this ambitious goal of trying to get that down to 20, which seems like an awful lot,” said Geist.

Then there was reliability: “The fear with the calculations we were doing at the time is that failures would happen faster than you could checkpoint a job,” said Geist.

It was further thought that billion-way concurrency would be required.

“The question was, could there be more than even just a handful of applications, if even one, that could utilize that much parallelism?” Geist recalled. “In 2009, large scale parallelism was typically less than 10,000 nodes. And the largest application we had on on record was only about 100,000 nodes used.”

The last issue was a thorny one: data movement.

“We were seeing the whole problem with the memory wall: basically that the time for moving data from memory into the processors and from the processors back out to storage was actually the main bottleneck for doing the computing; the computing time was insignificant,” said Geist. “The time to move a byte is orders of magnitude longer than a floating point operation.”

 

Geist recalled the DARPA exascale computing report that came out in 2008 (led by Peter Kogge). It included a deep analysis of what it would take to field a 1 exaflops peak system.

With the technologies at the time, it would take 1,000 MW to build a system of off-the-shelf components, but if you scaled the then current flops-per-watt trends, you’d cross exascale at roughly 155 MW with a very optimized architecture, Geist relayed. A barebones configuration, stripping away memory from the strawman system down to just 16 gigabytes per node, resulted in a 69-70 MW footprint.

But even the aggressive 70 MW figure was out of range. A machine that power-hungry was unlikely to secure the necessary funding approvals.

“You might wonder, where did that [20 MW number] come from?” Geist posed. “Actually, it came from a totally non-technical evaluation of what was possible. What was possible said: it’s gonna take 150 MW. What we said is: we need it to be 20 [MW]. And why we said that is that [we asked] the DOE, ‘How much are they willing to pay for power over the life of a system?’ and the number that came back from the head of Office of Science at the time was that they weren’t willing to pay over $100 million over the five years, so it’s simple math [based on an average cost of $1 million per megawatt per year]. The 20 megawatts had nothing to do with what might be possible, it was just that stake that we drove in the ground.”

Jumping ahead in the presentation (which is available to watch and linked at the end of this article), Geist traces the evolution of machines at Oak Ridge: Titan to Summit to Frontier. The extreme concurrency challenge is addressed by Frontier’s fat node approach, where the GPUs hide the parallelism inside their pipelines.

“The number of nodes did not explode – it didn’t take a million nodes to get to Frontier,” said Geist. “In fact, the number of nodes is really quite small.”

Where Titan used a one-to-one GPU-to-CPU ratio, Summit implemented a three-to-one ratio. Frontier’s design kicks that up a notch with a four-to-one GPU-to-CPU ratio.

“In the end, what we found out was that exascale didn’t require this exotic technology that came out in the 2008 report,” said Geist. “We didn’t need special architectures, we didn’t even need new programming paradigms. It turned out to be very incremental steps, not a giant leap like we thought it was going to take to get to Frontier.”

As for power, the expectation is that Frontier will exceed one-and-a-half exaflops peak performance while consuming no more than 29 megawatts. “That’s actually a little bit better than the 20 megawatts per exaflop that we just drove a stake in the ground as a rule of thumb as opposed to what technology could do,” said Geist. “But in fact, the vendors that worked on and designed Frontier did an amazing job of being able to meet that.”

Geist also traces the energy efficiency improvements to the DOE’s investment in exascale-development programs FastForward, DesignForward and PathForward.

“It was [largely] due to those 10 years of DOE investment that [participating] vendors were actually able to decrease the amount of energy their chips and memories needed to be able to do an exaflop of computations for only 20 megawatts of power,” said Geist.

Geist’s energy efficiency math is based on peak (double-precision) flops, not Linpack. A conservatively estimated computing efficiency of 70 percent (Rmax/Rpeak) provides 1050 Linpack petaflops at 29 megawatts, or 36.2 gigaflops-per-watt. At 80 percent computing efficiency, energy efficiency increases to 41.4 gigaflops-per-watt. (Current greenest supercomputers are nearing 30 gigaflops-per-watt.) Perlmutter, the new #5 system installed at Berkeley Lab – combining HPE, AMD and Nvidia technology and also using a four-to-one GPU-to-CPU ratio – achieves 25.50 gigaflops-per-watt. Also note that ORNL has said Frontier will be “more than” 1.5 exaflops peak.

Geist also highlighted reliability improvements owed to on-node flash memory, further enabled by the vendors making their networks and their system software much more adaptive. (Failing and restarting gracefully is key.)

With Frontier, the memory wall issue has been mitigated through the use of HBM on the GPUs. “Frontier has got high bandwidth memory (HBM) memory soldered directly onto the GPU,” Geist said. “So it increases the bandwidth by an order of magnitude. So it kind of kicks the can down the road for this problem. And the GPUs, one of the things caused by the high bandwidth is the latency can be pretty high in those cases, but the GPUs are actually very well-suited, given their pipelines, at latency hiding.”

There’s a lot more interesting material in Geist’s presentation, like the cosmic ray problem, lessons learned from Summit and Sierra and a question and answer session. Watch the full talk here: https://vimeo.com/562917879

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire