Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

By Tiffany Trader

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement.

Al Geist, Oak Ridge National Laboratory

Al Geist kicked off ORNL’s Advanced Technologies Section (ATS) webinar series last month by recapping the history of the march toward exascale. As Geist described how the Frontier supercomputer addresses the four primary exascale challenges, he disclosed key information about the anticipated inaugural U.S. exascale computer.

Most notably, Frontier is poised to hit the 20 MW power goal set by DARPA in 2008 by delivering more than 1.5 peak exaflops of performance inside a 29 MW power envelope. Although the once-aspirational target had originally been etched for 2015, until fairly recently, it was not clear that the first crop of exascale supercomputers – set to arrive in the 2021-2023 timeframe – would make the cut. Indeed, it is unclear if they all will, but it is looking like Frontier, using HPE and AMD technologies, will.

Geist is a corporate fellow at and CTO of the Oak Ridge Leadership Computing Facility (OLCF) and the CTO of the Exascale Computing Project. He’s also one of the original developers of PVM (Parallel Virtual Machine) software, a de facto standard for heterogeneous distributed computing.

Geist began his talk with a review of the four major challenges that were set out in the 2008-2009 timeframe, when exascale planning was ramping up within the Department of Energy and its affiliated organizations.

“The four challenges also existed during the petascale regime, but in 2009, we felt there was a serious problem where we might not even be able to build an exascale system,” said Geist. “It wasn’t just that it would be costly, or that it would be hard to program – it may just be impossible.”

Energy consumption loomed large.

“Research papers that came out in 2008 predicted that an exaflop system would consume between 150 to up to 500 megawatts of energy. And the vendors were given this ambitious goal of trying to get that down to 20, which seems like an awful lot,” said Geist.

Then there was reliability: “The fear with the calculations we were doing at the time is that failures would happen faster than you could checkpoint a job,” said Geist.

It was further thought that billion-way concurrency would be required.

“The question was, could there be more than even just a handful of applications, if even one, that could utilize that much parallelism?” Geist recalled. “In 2009, large scale parallelism was typically less than 10,000 nodes. And the largest application we had on on record was only about 100,000 nodes used.”

The last issue was a thorny one: data movement.

“We were seeing the whole problem with the memory wall: basically that the time for moving data from memory into the processors and from the processors back out to storage was actually the main bottleneck for doing the computing; the computing time was insignificant,” said Geist. “The time to move a byte is orders of magnitude longer than a floating point operation.”

 

Geist recalled the DARPA exascale computing report that came out in 2008 (led by Peter Kogge). It included a deep analysis of what it would take to field a 1 exaflops peak system.

With the technologies at the time, it would take 1,000 MW to build a system of off-the-shelf components, but if you scaled the then current flops-per-watt trends, you’d cross exascale at roughly 155 MW with a very optimized architecture, Geist relayed. A barebones configuration, stripping away memory from the strawman system down to just 16 gigabytes per node, resulted in a 69-70 MW footprint.

But even the aggressive 70 MW figure was out of range. A machine that power-hungry was unlikely to secure the necessary funding approvals.

“You might wonder, where did that [20 MW number] come from?” Geist posed. “Actually, it came from a totally non-technical evaluation of what was possible. What was possible said: it’s gonna take 150 MW. What we said is: we need it to be 20 [MW]. And why we said that is that [we asked] the DOE, ‘How much are they willing to pay for power over the life of a system?’ and the number that came back from the head of Office of Science at the time was that they weren’t willing to pay over $100 million over the five years, so it’s simple math [based on an average cost of $1 million per megawatt per year]. The 20 megawatts had nothing to do with what might be possible, it was just that stake that we drove in the ground.”

Jumping ahead in the presentation (which is available to watch and linked at the end of this article), Geist traces the evolution of machines at Oak Ridge: Titan to Summit to Frontier. The extreme concurrency challenge is addressed by Frontier’s fat node approach, where the GPUs hide the parallelism inside their pipelines.

“The number of nodes did not explode – it didn’t take a million nodes to get to Frontier,” said Geist. “In fact, the number of nodes is really quite small.”

Where Titan used a one-to-one GPU-to-CPU ratio, Summit implemented a three-to-one ratio. Frontier’s design kicks that up a notch with a four-to-one GPU-to-CPU ratio.

“In the end, what we found out was that exascale didn’t require this exotic technology that came out in the 2008 report,” said Geist. “We didn’t need special architectures, we didn’t even need new programming paradigms. It turned out to be very incremental steps, not a giant leap like we thought it was going to take to get to Frontier.”

As for power, the expectation is that Frontier will exceed one-and-a-half exaflops peak performance while consuming no more than 29 megawatts. “That’s actually a little bit better than the 20 megawatts per exaflop that we just drove a stake in the ground as a rule of thumb as opposed to what technology could do,” said Geist. “But in fact, the vendors that worked on and designed Frontier did an amazing job of being able to meet that.”

Geist also traces the energy efficiency improvements to the DOE’s investment in exascale-development programs FastForward, DesignForward and PathForward.

“It was [largely] due to those 10 years of DOE investment that [participating] vendors were actually able to decrease the amount of energy their chips and memories needed to be able to do an exaflop of computations for only 20 megawatts of power,” said Geist.

Geist’s energy efficiency math is based on peak (double-precision) flops, not Linpack. A conservatively estimated computing efficiency of 70 percent (Rmax/Rpeak) provides 1050 Linpack petaflops at 29 megawatts, or 36.2 gigaflops-per-watt. At 80 percent computing efficiency, energy efficiency increases to 41.4 gigaflops-per-watt. (Current greenest supercomputers are nearing 30 gigaflops-per-watt.) Perlmutter, the new #5 system installed at Berkeley Lab – combining HPE, AMD and Nvidia technology and also using a four-to-one GPU-to-CPU ratio – achieves 25.50 gigaflops-per-watt. Also note that ORNL has said Frontier will be “more than” 1.5 exaflops peak.

Geist also highlighted reliability improvements owed to on-node flash memory, further enabled by the vendors making their networks and their system software much more adaptive. (Failing and restarting gracefully is key.)

With Frontier, the memory wall issue has been mitigated through the use of HBM on the GPUs. “Frontier has got high bandwidth memory (HBM) memory soldered directly onto the GPU,” Geist said. “So it increases the bandwidth by an order of magnitude. So it kind of kicks the can down the road for this problem. And the GPUs, one of the things caused by the high bandwidth is the latency can be pretty high in those cases, but the GPUs are actually very well-suited, given their pipelines, at latency hiding.”

There’s a lot more interesting material in Geist’s presentation, like the cosmic ray problem, lessons learned from Summit and Sierra and a question and answer session. Watch the full talk here: https://vimeo.com/562917879

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

White House Scientific Integrity Report Addresses AI and ML Ethics

January 26, 2022

Earlier this month, the White House Office of Science and Technology Policy (OSTP) Scientific Integrity Task Force released a report titled “Protecting the Integrity of Government Science.” While broad-based and over Read more…

IBM Quantum Debuts Classical Entanglement Forging to Expand Simulation Capabilities

January 26, 2022

IBM last week reported a new technique – entanglement forging – that uses both quantum and classical computing resources to double the size of select simulation problems that can be solved on current quantum computer Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of all sizes. The new HPC-as-a-Service is part of the TruScale Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new ThreadArch multi-thread processor technology that is intended to h Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have dominated the conversation. Microsoft’s proposed topologic Read more…

AWS Solution Channel

Register for the AWS “Speeds n’ Feeds” event on Feb. 9th

Since the debut of the first ‘Beowulf’ cluster in 1994, HPC has been a race between technologists squeezing as much performance as possible from hardware, and scale economics driving mass-production prices to affordable levels. Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will b Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new Thread Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

IBM Watson Health Finally Sold by IBM After 11 Months of Rumors

January 21, 2022

IBM has sold its underachieving IBM Watson Health unit for an undisclosed price tag to a global investment firm after almost a year’s worth of rumors that sai Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire