Summer Reading: “High-Performance Computing Is at an Inflection Point”

By John Russell

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape of High-Performance Computing (HPC) is undergoing a seismic shift.

“Future architectures,” they contend, “will have to provide a range of specialized architectures enabling a broad range of workloads, all under a strict energy cap. These architectures will have to be integrated within each node—as already seen in mobile and embedded systems—to avoid data movements across nodes or even worse, across system modules when switching between accelerator types.”

That HPC is transforming is hardly in dispute, and the authors – Martin Schulz, Dieter Kranzlmüller, Laura Brandon Schulz, Carsten Trinitis, Josef Weidendorfer – acknowledge many familiar pressures (end of Dennard scaling, declining Moore’s Law, etc.) and propose four guiding principles for the future of HPC architecture:

  • Energy consumption is no longer merely a cost factor but also a hard feasibility constraint for facilities.
  • Specialization is key to further increase performance despite stagnating frequencies and within limited energy bands.
  • A significant portion of the energy budget is spent moving data and future architectures must be designed to minimize such data movements.
  • Large-scale computing centers must provide optimal computing resources for increasingly differentiated workloads.

Their paper, On the Inevitability of Integrated HPC Systems and How they will Change HPC System Operations, digs into each of the four areas. They note that integrated heterogeneous systems (interesting turn of phrase) “are a promising alternative, which integrate multiple specialized architectures on a single node while keeping the overall system architecture a homogeneous collection of mostly identical nodes. This allows applications to switch quickly between accelerator modules at a fine-grained scale, while minimizing the energy cost and performance overhead, enabling truly heterogeneous applications.”

A core ingredient in achieving this kind of integrated heterogeneity is the use of chiplets.

“Simple integrated systems with one or two specialized processing elements (e.g., with GPUs or with GPUs and tensor units) are already used in many systems. Research projects, like ExaNoDe, are currently investigating integration with promising results. Also, several commercial chip manufacturers are rumored to be headed in this direction,” write the researchers. “Currently and most prominently, the European Processor Initiative EPI) is looking at a customizable chip design combining ARM cores with different accelerator modules (Figure 1). Additionally, several groups are experimenting with clusters that GPUs and FPGAs within nodes, either for alternative workloads directed at the appropriate architecture or for solving large parallel problems with algorithms mapped to both architectures. Future systems are likely to push this even further, aiming at a closer integration and a larger diversity of architectures, leading to systems with more heterogeneity and flexibility in their usage.”

This integrated approach is not without challenges, agree the researchers: “[W]hile it is easy to run a single application across the entire system— since the same type of node is available everywhere—a single application is likely not going use all specialized compute elements at the same time, leading to idle processing elements. Therefore, the choice of the best-suited accelerator mix is an important design criterion during procurement, which can only be achieved via co-design between the computer center and its users on one side and the system vendor on the other. Further, at runtime, it will be important to dynamically schedule and power the respective compute resources. Using power overprovisioning, i.e., planning for a TDP and maximal node power that is reached with a subset of dynamically chosen accelerated processing elements, this can be easily achieved, but requires novel software approaches in system and resource management.”

They note the need for programming environments and abstractions to exploit the different on-node accelerators. “For widespread use, such support must be readily available and, in the best case, in a unified manner in one programming environment. OpenMP, with its architecture-agnostic target concept, is a good match for this. Domain-specific frameworks, as they are, e.g., common in AI, ML or HPDA (e.g., Tensorflow, Pytorch or Spark), will further help to hide this heterogeneity and help make integrated platforms accessible to a wide range of users.”

To cope with intra-node device diversity and inevitable idle periods among various devices, the researchers propose developing a “new level of adaptivity coupled with dynamic scheduling of compute and energy resources to exploit an integrated system fully.” The core of this adaptive management approach, the suggest, is a feedback loop, as shown in figure 2 below.

This adaptive approach is being investigated as part of EU research project REGALE, launched this spring. REGALE uses measured information across all system layers and uses that information to adaptivity drive the entire stack:

  • Application Level. Changing application resources in terms of number and type of processing elements dynamically.
  • Node Level. Changing node settings, e.g. power/energy consumption via techniques like DVFS or power capping as well as node level partitioning of memory, caches, etc.
  • System Level. Adjusting system operation based on work- loads or external inputs, e.g., energy prices or supply levels.

The position paper is a quick read and best done directly. While the level and type of integration may vary, in their conclusion the researchers, “argue that such integration has to be on-node or even on-chip in order to: minimize and shorten expensive data transfers; enable fine-grained shifting between different processing elements running within a node; and to allow applications to utilize the entire machine for scale-out experiments rather than only individual modules or sub-clusters of a particular technology.”

Only such an approach, they contend, will enable design and deployment of large-scale compute resources capable of providing a diversified portfolio of computing, at scale and at optimal energy efficiency. Time will tell.

Link to paper: https://dl.acm.org/doi/10.1145/3468044.3468046

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire