Summer Reading: “High-Performance Computing Is at an Inflection Point”

By John Russell

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape of High-Performance Computing (HPC) is undergoing a seismic shift.

“Future architectures,” they contend, “will have to provide a range of specialized architectures enabling a broad range of workloads, all under a strict energy cap. These architectures will have to be integrated within each node—as already seen in mobile and embedded systems—to avoid data movements across nodes or even worse, across system modules when switching between accelerator types.”

That HPC is transforming is hardly in dispute, and the authors – Martin Schulz, Dieter Kranzlmüller, Laura Brandon Schulz, Carsten Trinitis, Josef Weidendorfer – acknowledge many familiar pressures (end of Dennard scaling, declining Moore’s Law, etc.) and propose four guiding principles for the future of HPC architecture:

  • Energy consumption is no longer merely a cost factor but also a hard feasibility constraint for facilities.
  • Specialization is key to further increase performance despite stagnating frequencies and within limited energy bands.
  • A significant portion of the energy budget is spent moving data and future architectures must be designed to minimize such data movements.
  • Large-scale computing centers must provide optimal computing resources for increasingly differentiated workloads.

Their paper, On the Inevitability of Integrated HPC Systems and How they will Change HPC System Operations, digs into each of the four areas. They note that integrated heterogeneous systems (interesting turn of phrase) “are a promising alternative, which integrate multiple specialized architectures on a single node while keeping the overall system architecture a homogeneous collection of mostly identical nodes. This allows applications to switch quickly between accelerator modules at a fine-grained scale, while minimizing the energy cost and performance overhead, enabling truly heterogeneous applications.”

A core ingredient in achieving this kind of integrated heterogeneity is the use of chiplets.

“Simple integrated systems with one or two specialized processing elements (e.g., with GPUs or with GPUs and tensor units) are already used in many systems. Research projects, like ExaNoDe, are currently investigating integration with promising results. Also, several commercial chip manufacturers are rumored to be headed in this direction,” write the researchers. “Currently and most prominently, the European Processor Initiative EPI) is looking at a customizable chip design combining ARM cores with different accelerator modules (Figure 1). Additionally, several groups are experimenting with clusters that GPUs and FPGAs within nodes, either for alternative workloads directed at the appropriate architecture or for solving large parallel problems with algorithms mapped to both architectures. Future systems are likely to push this even further, aiming at a closer integration and a larger diversity of architectures, leading to systems with more heterogeneity and flexibility in their usage.”

This integrated approach is not without challenges, agree the researchers: “[W]hile it is easy to run a single application across the entire system— since the same type of node is available everywhere—a single application is likely not going use all specialized compute elements at the same time, leading to idle processing elements. Therefore, the choice of the best-suited accelerator mix is an important design criterion during procurement, which can only be achieved via co-design between the computer center and its users on one side and the system vendor on the other. Further, at runtime, it will be important to dynamically schedule and power the respective compute resources. Using power overprovisioning, i.e., planning for a TDP and maximal node power that is reached with a subset of dynamically chosen accelerated processing elements, this can be easily achieved, but requires novel software approaches in system and resource management.”

They note the need for programming environments and abstractions to exploit the different on-node accelerators. “For widespread use, such support must be readily available and, in the best case, in a unified manner in one programming environment. OpenMP, with its architecture-agnostic target concept, is a good match for this. Domain-specific frameworks, as they are, e.g., common in AI, ML or HPDA (e.g., Tensorflow, Pytorch or Spark), will further help to hide this heterogeneity and help make integrated platforms accessible to a wide range of users.”

To cope with intra-node device diversity and inevitable idle periods among various devices, the researchers propose developing a “new level of adaptivity coupled with dynamic scheduling of compute and energy resources to exploit an integrated system fully.” The core of this adaptive management approach, the suggest, is a feedback loop, as shown in figure 2 below.

This adaptive approach is being investigated as part of EU research project REGALE, launched this spring. REGALE uses measured information across all system layers and uses that information to adaptivity drive the entire stack:

  • Application Level. Changing application resources in terms of number and type of processing elements dynamically.
  • Node Level. Changing node settings, e.g. power/energy consumption via techniques like DVFS or power capping as well as node level partitioning of memory, caches, etc.
  • System Level. Adjusting system operation based on work- loads or external inputs, e.g., energy prices or supply levels.

The position paper is a quick read and best done directly. While the level and type of integration may vary, in their conclusion the researchers, “argue that such integration has to be on-node or even on-chip in order to: minimize and shorten expensive data transfers; enable fine-grained shifting between different processing elements running within a node; and to allow applications to utilize the entire machine for scale-out experiments rather than only individual modules or sub-clusters of a particular technology.”

Only such an approach, they contend, will enable design and deployment of large-scale compute resources capable of providing a diversified portfolio of computing, at scale and at optimal energy efficiency. Time will tell.

Link to paper: https://dl.acm.org/doi/10.1145/3468044.3468046

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire