re:Inventing HPC networking for the cloud

July 26, 2021

Learn how AWS created a new network interface designed for applications requiring high levels of inter-node communications at scale.

When we started designing our Elastic Fabric Adapter (EFA) several years ago, many were skeptical about its ability to support customers who run all the difficult-to-scale, “latency-sensitive” codes – like weather simulations and molecular dynamics.

Partly, this was due to these codes emerging from traditional on-premises HPC environments with purpose-built machine architectures. These machines designs are driven by every curve ball and every twist in some complicated algorithms. This is “form meets function”, though maybe “hand meets glove” is maybe more evocative. It’s common in HPC to design machines to fit a code, and also common to find that over time the code comes to fit the machine. My other hesitation came from the HPC hardware community getting very focused in recent years on the impact of interconnect latency on application performance. Over time, we came to assume it was a gating factor.

But it turns out: EFA rocks at these codes! Ever since we launched EFA we’ve been learning new lessons about whole classes of codes that are more throughput-constrained than limited by latency. Mainly what we learned was that single-packet latency measured by micro-benchmarks is distracting when trying to predict code performance on an HPC cluster.

Latency isn’t as important as we thought

Latency isn’t irrelevant, though. It’s just that so many of us in the community overlooked the real goal, which is for MPI ranks on different machines to exchange chunks of data quickly. Single-packet latency measures are only a good proxy for that when your network is perfect, lossless, and uncongested. Real applications send large chunks of data to each other. Real networks are busy. What governs “quickly” is whether the hundreds, or thousands of packets that make up that data exchange arrive intact. They also must arrive soon enough (for the next timestep in a simulation, say) so they’re not holding up the other ranks.

Figure 1. Micro benchmarks like single packet latency don’t compare to actual workloads running real work. EFA’s approach delivered dramatic results for customers’ applications. Including many we didn’t expect.

Most fabrics (like Infiniband) and protocols (like TCP) send the packets in order. That’s a design choice those transports made (back in the day), making it the network’s problem to re-assemble messages into contiguous blocks of data. However, it means a single packet getting lost messes up the on-time arrival of all the packets behind it in the queue (an effect called “head of line blocking”). However, it did save the need for a fancy PCI card (or worse, an expensive CPU) being involved to reassemble the data and chaperone all the stragglers.

You can see why single-packet latency matters for these fabrics – it’s literally going to make all the difference to how fast they can recover from a lost packet and maintain throughput.

The measure we all should pay more attention to is the p99 tail latency. This is the worst latency experienced by 99% of all packets and speaks for more of the “real network” effects. It’s the net result of all those lost packets, retransmits, and congestion, and it’s the one that predicts the overall performance of MPI applications the most. This is mainly because of routines like collective operations (like MPI_Barrier or MPI_Allreduce) that hold processing up to get all ranks synchronized before moving to a crucial next step. It’s why you often hear experienced HPC engineers say that MPI codes are only as fast as the slowest rank.

Figure 2. When different streams experience different rates of packet loss or (like in this case) contention for one endpoint, protocol differences can amplify the effects (TCP, top), or mitigate them (Scalable Reliable Datagram, SRD bottom). The net effect on an application is substantial.

This wasn’t news to protocol designers. It’s just that in, the early 2000s, we didn’t have the same low-cost high-performance silicon options we had later in 2018, or 2021. We also didn’t have AWS.

This last point is significant, because operating infrastructure at the scale and pace of growth we do, forces some different design choices. Firstly, AWS is always on. Even a national supercomputer facility goes offline for maintenance every now and again: usually it’s a window for vital repairs, file system upgrades or to refactor the network fabric to make room for expansion. We don’t have that luxury because customers rely on us 24×7. And because we’re so reliable, and agile and scalable, we’re experiencing a pace of growth that means literal truckloads of new servers arrive at our data centers every day. HPC customers kept telling us that they love the reliability, agility, and scalability of AWS, too, so just building a special Region full of HPC equipment wasn’t going to get us off the hook.

The lessons we drew from this were that we can’t do islands of specially connected CPUs, because they’d quickly be surrounded by oceans of everything else. And that everything else stuff is part of what makes the cloud magical. Why restrict HPC people to a small subset of the cloud? Couldn’t we make that everything else part of the solution?

Read the full blog to learn how and why we built our own reliable datagram protocol that enables our customers to scale their tightly-coupled HPC or distributed machine learning applications to thousands of cores.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire