Will Approximation Drive Post-Moore’s Law HPC Gains?

By Oliver Peckham

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking at Supercomputing Frontiers Europe 2021, likely wasn’t wrong: the proximate death of Moore’s law has been a hot topic in the HPC community for a long time. But Thompson wasn’t just there to sound the death knell – he was there to discuss the future of computing, which, in his terms, was an approximate one.

Replacing Moore’s law

Thompson opened with a graph of computing power utilized by the National Oceanic and Atmospheric Administration (NOAA) over time. “Since the 1950s, there has been about a one trillion-fold increase in the amount of computing power being used in these models,” he said. But there was a problem: tracking a weather forecasting metric called mean absolute error (“When you make a prediction, how far off are you on that prediction?”), Thompson pointed out that “you actually need exponentially more computing power to get that [improved] performance.” Without those exponential gains in computing power, the steady gains in accuracy would slow, as well.

Enter, of course, Moore’s law, and the flattening of CPU clock frequencies in the mid-2000s. “But then we have this division, right?” Thompson said. “We start getting into multicore chips, and we’re starting to get computing power in that very specific way, which is not as useful unless you have that amount of parallelism.” Separating out parallelism, he explained, progress had dramatically slowed. “This might worry us if we want to, say, improve weather prediction at the same speed going forward,” he said.

So in 2020, Thompson and others wrote a paper examining ways to improve performance over time in a post-Moore’s law world. The authors landed on three main categories of promise: software-level improvements; algorithmic improvements; and new hardware architectures.

This third category, Thompson said, is experiencing the biggest moment right now, with GPUs and FPGAs exploding in the HPC scene and ever more tailor-made chips emerging. Just five years ago, only four percent of advanced computing users used specialized chips; now, Thompson said, it was 11 percent, and in five more years, it would be 17 percent. But over time, he cautioned, gains from specialized hardware would encounter similar problems to those currently faced by traditional hardware, leaving researchers looking for yet more avenues to improve performance.

Zooming out, Thompson asked the audience to consider performance improvements in terms of a simple equation: tasks ÷ computation × computation ÷ time. Thompson said the latter term of this equation – computations per unit time – represented hardware; the former – tasks per unit computation – represented algorithms.

Image courtesy of Neil Thompson.

“The question, of course, is: how big are the benefits that we can get from algorithms?”

Algorithmic progress

Thompson referenced a report from a White House advisory council, which read, in part: “In many areas, performance gains due to improvements in algorithms have vastly exceeded even the dramatic performance gains due to increased processor speed.”

That report, Thompson cautioned, was citing a “pretty limited” study on linear solvers – and that wasn’t enough proof for him. So along with one of his students, Yash Sherry, Thompson went through 57 textbooks covering different areas of computer science across the decades – everything from operating systems and numerical analysis to statistics and cryptography. Through this work, which Thompson called “the first large census of important algorithms,” they identified around 100 algorithm “families” supported by around 1,100 research papers. This, he said, allowed them to graph those algorithms in terms of performance over time.

Thompson showed a few of those graphs as an example. Singling out one, he pointed out the enormous strides that algorithm improvements alone were able to achieve. “For this problem overall, there has been an enormous gain – in fact, a trillion-fold improvement in performance,” he said. “Now, compare that within the gray line here – that’s the hardware performance from spec.” The gray line, of course, was dwarfed.

Relative performance over time from the 1940s to present (with apologies for the pixelation). The colorful lines represent various algorithms, while the gray line represents hardware improvement. Image courtesy of Neil Thompson.

That isn’t always the case, though. Some of the other algorithms progressed about on par with Moore’s law; others had almost no improvement over time. On average, Thompson said, “if your problem size is small [around n=1000], the gains are not that big – about six percent per year.” Bump it up a few orders of magnitude, though, and the gains were more like 15 percent per year; a few more, 28 percent.

These rates, Thompson said, compared favorably to the current state of Moore’s law. “In the 1990s, Moore’s law was improving very, very rapidly,” he said. “The gains were actually more than 52 percent per year. And so … gains from algorithms are not that high. But Moore’s law has slowed down a lot, right?” In fact, he showed that the current gains from Moore’s law were hovering around six percent — about the same as algorithmic improvements for small problem sizes.

Yearly improvement rate in algorithm performance by problem size. Image courtesy of Neil Thompson.

“Can we continue to get these gains in algorithms?” Thompson asked – or would performance improvements from algorithms, too, suffer the same fate as Moore’s law? By way of example, he presented a sequence alignment algorithm used to establish how many edits “apart” two texts were. The algorithm, Thompson said, had experienced steady improvement until about 2015, and now, “this algorithm is as good as we can mathematically make it.”

But, Thompson said, “what if we were willing to accept a little bit of error? What if we’re willing to get the answer wrong – but just a bit?”

The approximate future of computing

The way past these mathematical limits in algorithm optimization, Thompson explained, was through approximation. He brought back the graph of algorithm improvement over time, adding in approximate algorithms – one 100 percent off, one ten percent off. “If you are willing to accept a ten percent approximation to this problem,” he said, you could get enormous jumps, improving performance by a factor of 32. “We are in the process of analyzing this data right now, but I think what you can already see here is that these approximate algorithms are in fact giving us very very substantial gains.”

Thompson presented another graph, this time charting the balance of approximate versus exact improvements in algorithms over time. “In the 1940s,” he said, “almost all of the improvements that people are making are exact improvements – meaning they’re solving the exact problem. … But you can see that as we approach these later decades, and many of the exact algorithms are starting to become already completely solved in an optimal way … approximate algorithms are becoming more and more important as the way that we are advancing algorithms.”

Share of algorithm improvement by decade from the 1940s to the 2010s, divided into approximate (light blue) and exact (dark blue). Image courtesy of Neil Thompson.

“This gives me hope that, indeed, this approximate future of computing will still allow us to have very large gains coming from algorithms,” he concluded.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire