The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

By Staff Report

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO Sanjay Kale makes the case for smart runtime systems generally, and Charmworks specifically, as needed tools for taming power consumption challenges in a performant manner.

Power consumption, wrote Kale, “[is] such a large concern that the Department of Energy Science for the Future Act that was passed by the House of Representatives in July explicitly calls for an Energy Efficient Computing Program to be established by the DOE. The bill describes it as ‘a program of fundamental research, development, and demonstration of energy efficient computing technologies relevant to advanced computing applications in high performance computing, artificial intelligence, and scientific machine learning,’ and it says there should be partnerships among the national labs, industry, and higher-ed to co-design energy efficient hardware, software, and applications.”

Charm++, you may know, is one of several existing tools targeting large heterogeneous HPC systems. “With Charm++ and related software systems, you can optimize performance by way of continuous introspection – constantly and automatically assessing the performance of the computation and changing or reconfiguring it to improve that performance,” says Kale.

Here’s a summary description: “Charm++ is a parallel object-oriented programming paradigm based on C++ and developed in the Parallel Programming Laboratory at the University of Illinois at Urbana–Champaign. Charm++ is designed with the goal of enhancing programmer productivity by providing a high-level abstraction of a parallel program while at the same time delivering good performance on a wide variety of underlying hardware platforms. Programs written in Charm++ are decomposed into a number of cooperating message-driven objects called chares. When a programmer invokes a method on an object, the Charm++ runtime system sends a message to the invoked object, which may reside on the local processor or on a remote processor in a parallel computation. This message triggers the execution of code within the chare to handle the message asynchronously.”[i] (Short primer on Charm++)

While focused on Charm++, Kale’s blog notes important approaches embodied in several program-and-runtime approaches for coping with power consumption and effective execution on large heterogeneous computers. Below is an excerpt from Kale’s ‘Q&A’ blog with a link to the full blog at the end.

What attributes of its programming model allows Charm++ to reconfigure the application while it is running?

Charm++ has three main attributes. The first is overdecomposition, in which the programmer divides an application’s computation requirements into many relatively small objects, each representing a coarse work and/or data unit. The number of such objects greatly exceeds the number of processors. The second attribute is migratability, which is the ability to move these objects among processors. This means the user addresses their communication (i.e. messages) to the logical objects, rather than to physical processors. This gives the runtime system the ability to move these objects across nodes and processors as it sees fit. The third attribute is message-driven execution, which allows the system to select which of objects will run next based on availability of messages. These three attributes enable Charm++ to provide many useful features including dynamic load balancing, fault tolerance, and job malleability.

How does that help with runtime adaptation?

Take load balancing, for example. Any time the division of work among processors is not uniform, you have a load imbalance. If one processor takes longer than the others to complete its part, all others are held up as they wait to synchronize. This waiting leads to inefficiency and saps performance. That inefficiency can change and increase dramatically as the application evolves, for some applications.

Automatically assess and address that imbalance and you’re using power more efficiently, getting results faster, and/or improving the resolution of your simulation in the same amount of time.

Charm++ relies on the principle-of-persistence heuristic. This principle states that, for overdecomposed iterative applications, the task’s or object’s computation load and communication pattern tend to persist over time. The heuristic uses the application’s load statistics collected periodically by the runtime system, which provides an automatic, application-independent way of obtaining load statistics without any user input. If desired, the user can specify predicted loads and thus override system predictions. Using the collected load statistics, Charm++ periodically executes a load-balancing strategy to determine a better objects-to-processors mapping and then migrates objects to their new homes accordingly. Its suite of load balancers includes several centralized, distributed, and hierarchical strategies. Charm++ can also automate the decision of when to call the load balancer, as well as which strategy to use, based on observed application characteristics using a machine-learning model.

But notice that this whole capability was possible because the programming model supported overdecompostion and migratibility.


Link to full Kale blog: https://www.hpccharm.com/post/the-power-of-charm-and-runtime-systems

[i] https://en.wikipedia.org/wiki/Charm%2B%2B

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Top500: Fugaku Still on Top; Perlmutter Debuts at #5

June 28, 2021

The 57th Top500, revealed today from the ISC 2021 digital event, showcases many of the same systems as the previous edition, with Fugaku holding its significant lead and only one new entrant in the top 10 cohort: the Perlmutter system at the DOE Lawrence Berkeley National Laboratory enters the list at number five with 65.69 Linpack petaflops. Perlmutter is the largest... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire