Wafer Scale to ‘Brain-Scale’ – Cerebras Touts Linear Scaling up to 192 CS-2 Systems

By Tiffany Trader

August 24, 2021

At the Hot Chips conference today, held as a virtual event, wafer-scale computing company Cerebras Systems unveiled its “brain-scale” approach for running the largest models in the world across up to 192 CS-2 systems. To enable this, Cerebras is debuting its weight streaming technology, which flips the way that models are usually run, and launching two new products: MemoryX and SwarmX.

Cerebras introduced the CS-2 system earlier this year, doubling the performance of the original CS-1, which debuted at SC19. The CS-2 system, now shipping, houses the second-generation Cerebras Wafer Scale Engine (WSE-2), which contains 850,000 cores and 40 GB of memory.

Inspired by the human brain’s harnessing of 100 trillion synapses, the brain-scale approach is Cerebras’ answer to running the very largest AI models, which are seeing exponential hikes in the number of parameters. In 2018, Google’s BERT debuted with 340 million parameters, taking about nine petaflops days to train. In 2019, T5 upped the scale to 11 billion parameters and took 900 petaflops days to train. In 2020, Microsoft announced MSFT-1T – a one trillion parameter model – that took about 25-30,000 petaflops days to train, according to Cerebras Founder and CEO Andrew Feldman.

Exponential growth of neural networks (source: Cerebras)

Referencing the chart (above), Feldman told HPCwire, “It is rare you have an exponential log graph on both the x and y axis and you can see it increasing an extraordinary amount on both. Over a two-and-a-half year period, model sizes grew 1,000 times and the amount of compute necessary to work on them increased by over 1,000X as well.”

Cerebras is announcing that it can now support 120 trillion parameter models on a single CS-2, using a new custom memory extension technology called Cerebras MemoryX, which provides the second-generation WSE-2 with up to 2.4 petabytes of memory, allowing parameters to be stored off-system. And further, with the integration of new interconnect technology Cerebras SwarmX, the company can build clusters with up to 192 CS-2 systems, comprising an aggregate 163 million cores.

It is possible to configure these clusters with “a push of a button,” said Feldman, due to all the systems (nodes) using an identical initial configuration. The company has also implemented algorithmic techniques said to further increase the capabilities of the system to use less flops and power.

The technologies being introduced today enable the separation of model memory, compute and training data, such that each dimension can scale independently. “So the user can right-size the solution to their problem,” said Sean Lie, chief architect and co-founder, in his Hot Chips talk.

The heart of the innovation is a new execution mode called weight streaming. In the traditional execution mode, weights are held on the wafer and activations are streamed in. For models of extraordinary size, Cerebras reversed this, such that the weights are streamed in and the activations are held on chip. Cerebras’ MemoryX appliance uses a mix of DRAM and flash storage and scales from four terabytes to 2.4 petabytes in capacity, equivalent to between 200 billion and 120 trillion weights. Associated internal compute handles weight updates and provides other optimizer functionality.

The weight streaming approach only makes sense if you have a model big enough to fill up an entire wafer-scale chip (and beyond) and that era has definitely arrived, said Feldman.

The largest layers of the largest models fit comfortably within a single CS-2, according to Cerebras’ benchmarking. This is the reverse approach of the GPU which breaks up elements into pieces and distributes them across many compute units.

 

For training models across a cluster of CS-2s, each CS-2 starts with an identical configuration, and holds identical information. They differ only by the data coming in, which modifies the gradients, which are then broadcast across the SwarmX fabric. The data are reduced on the way out and enter the MemoryX technology. The process repeats until the all the layers are updated and the model is trained.

Because the systems are all identical, they can be configured in a single keystroke, Feldman emphasized.

Cerebras CS-2 machine

Linking units together is what supercomputing expertise is based on, he continued. “Our strategy at Cerebras was first: take as many of those little nodes as we can and put them on one wafer, and that’s our CS-2. Our new weight streaming technology allows us to map work to multiple CS-2s the exact same way we do it for one. You don’t have to partition, you don’t have to run model parallel. You basically compile to one CS-2 and you copy that config to n number of CS-2s, that’s it. The only thing you do is shard the data.”

Even the decision to run with the traditional pipeline mode or weight streaming mode is taken care of internally. Models larger than BERT and beyond GPT-2 or GPT-3 will trigger the switch to weight streaming mode, Feldman said, adding, “you write your TensorFlow or PyTorch code, and we take care of everything else.”

Cerebras has also enabled a feature to leverage the efficiencies of sparsity that saves time and energy. “What we can do because of our fine-grained dataflow architecture is that we never multiple by zero,” said Feldman. “It is enabled by technologies in the chip, and foremost massive memory bandwidth,” said Feldman.

“This means if your model has 50 percent sparsity, the Cerebras system can do it twice as fast,” he added.

While envisioning a future where 192 CS-2 machines work together as one system, Feldman believes a realistic near-term goal is to stand up 16 and 32 node clusters. The company has GPT-3 layers running on the CS-2, and they expect to show additional performance “on some of the largest networks” within months.

Linear performance scaling to 192 CS-2s. Projections based on Scaling Laws for Neural Language Models [OpenAI].

The news drew positive comments from market-watchers in the space.

“The wafer-scale approach is unique and clearly better for big models than much smaller GPUs,” said Linley Gwennap, president and principal analyst of The Linley Group. “By coupling the WSE with the new MemoryX and SwarmX technology, Cerebras has created what should be the industry’s best solution for training very large neural networks. Streaming the weights is a unique idea that hasn’t been tried, so it’s unclear exactly how much better this approach will be, but the ability to store even the largest model layers in the WSE gives Cerebras a big leg up on these enormous models.”

The market for models with billions of parameters is small today but should grow quickly, said Gwennap. “For the most part, these models remain experimental and aren’t yet used in production,” he added. “But even a handful of customers buying 16-32 system clusters would be a big revenue boost for Cerebras. The main obstacle to deploying these models is the long time that it takes to train them on GPUs, so the faster Cerebras can train the models, the sooner customers can move these models into production, which will require purchases of many more systems.”

Karl Freund, founder and principal analyst of Cambrian AI Research, said he’s been wondering how Cerebras was going to be able to run huge models and provide the scalability needed. “Models are doubling every 3.5 months,” Freund told HPCwire. “Nvidia has a solution coming: Grace (Arm CPU). Cerebras’ solution provides scads of memory AND data prep processing. I think the company has benefited greatly by the close relationships they have developed with researchers.”

Cerebras’ customer base for its CS systems include multiple DOE labs in the U.S., EPCC in the UK, as well as commercial sites GlaxoSmithKline and AstraZeneca.

MemoryX and SwarmX products will begin shipping in Q4 of this year, Cerebras said. Pricing was not disclosed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire