Argonne’s 44-Petaflops ‘Polaris’ Supercomputer Will Be Testbed for Aurora, Exascale Era

By Tiffany Trader

August 25, 2021

A new 44-petaflops (theoretical peak) supercomputer is under construction at the Department of Energy’s Argonne National Laboratory. Called Polaris, this new supercomputing star has been selected to light the way to exascale and to Aurora, the exascale-class Intel-HPE system that’s had its delivery pushed to next year (2022).

Ahead of today’s official unveiling announcement, HPCwire spoke with Kalyan Kumaran, senior computer scientist and the director of technology at Argonne’s Leadership Computing Facility (ALCF) about how the laboratory will be using the system as a stepping stone to Aurora and beyond.

Built by HPE and powered by AMD CPUs and Nvidia GPUs, Polaris will enable researchers and developers to test and optimize software codes and applications to address a range of AI, engineering, and scientific projects planned for the forthcoming Aurora supercomputer, a joint collaboration between Argonne, Intel and HPE.

The installation currently underway spans 280 HPE Apollo Gen10 Plus systems across 40 racks, aggregating a total of 560 AMD Epyc Rome CPUs and 2,240 Nvidia 40GB A100 GPUs with HPE’s Slingshot networking. As part of a planned upgrade, the second-gen Epyc Rome CPUs (32-core 7532 SKU) will be swapped out in March 2022 for third-gen Epyc Milans (the 32-core 7543 part). At the same time, Polaris will transition from the Slingshot 10 to Slingshot 11 fabric (the same as Aurora will use). The system uses air-cooled HGX “Redstone” boards with liquid-cooling employed by rear-door heat exchangers.

At 44-petaflops (double-precision, peak) Polaris would rank among the world’s top 15-or-so fastest computers. The system’s theoretical AI performance tops out at nearly 1.4 exaflops, based on mixed-precision compute capabilities, according to HPE and Nvidia.

Polaris will tie into ALCF’s two 100 PB globally accessible Lustre filesystems named Grand and Eagle, which are backed by HPE’s Cray ClusterStor E1000 platform. Installed in January of this year, each storage array controls 8,480 disk drives with a sustained transfer speed of 650 Gbps, according to the ALCF documentation.

The choice of the Apollo Gen10 Plus rather than the HPE Cray EX architecture was deliberate, owing to Gen10’s flexibility to support additional configurations. “Each of these chassis actually fits two (single-socket) nodes, and they do support other accelerators,” said Kumaran. “So in the future, we could have new Apollo chassis added to this configuration, which would support, say, Nvidia GPUs on one side and maybe some other GPUs on the other side. And in the future, they could be supporting other AI accelerators.”

This is one of the ways that Polaris may continue to be an avenue for future research work even after Aurora – a Cray EX design – is deployed, said Kumaran. The Argonne Lab has been something of a hot spot for exploring emerging AI hardware. Its AI test bed currently includes a Cerebras CS-1 system, a Graphcore Colossus GC2 system, a SambaNova DataScale machine and (coming in 2021) Groq accelerator hardware.

Aurora’s compute nodes will be equipped with two Sapphire Rapids processors and six Ponte Vecchio general-purpose GPUs. Source: Intel Corp.

Polaris will provide roughly four times as much compute power as Argonne’s 7-petaflops Linpack (11.7-petaflops peak) HPE/Cray XC40 Theta system, which was installed in late 2016 to be a companion and ramp machine for an earlier unrealized conception of Aurora (aka A18). At the beginning of this year, thanks to CARES Act funding, the lab added 24 Nvidia DGX A100 nodes to Theta, significantly boosting its capabilities.

With its heterogeneous CPU-GPU architecture (in a 1:4 ratio), Polaris is helping Argonne make the transition to the Intel-HPE Aurora system, which slipped from 2021 to 2022 on account of Intel roadmap delays (impacting Sapphire Rapids and Ponte Vecchio). Polaris will be used by researchers within the DOE’s Exascale Computing Project and the ALCF’s Aurora Early Science Program to start prepping their codes for Aurora.

“We looked at many possible solutions with Aurora in the back of our mind,” said Kumaran of the technology selection process. “We wanted something with multi-GPU node support. And we wanted something that would support some of the key programming models on Aurora, which is MPI, OpenMP, and also SYCL in DPC++ (the SYCL 2020 variant from Intel). We wanted these programming models supported, and Polaris offered that solution.

“It has multi GPU nodes. It supports the programming models. It’s got the same Slingshot interconnect that will be on Aurora. And our Early Science Program has applications in normally the traditional HPC simulation space, but also the data and learning space. So we wanted a number of optimized frameworks, optimized Python support, and things like that, that will be available on Aurora for these applications to make progress. And that’s available with the Nvidia and HPE solutions.”

Projects highlighted by Argonne include:

Advancing cancer treatment by accelerating research in understanding the role of biological variables in a tumor cell’s path by advancing the use of data science to drive analysis of extreme-scale fluid-structure-interaction simulations; and predicting drug response to tumor cells by enabling billions of virtual drugs to be screened from single to numerous combinations, while predicting their effects on tumorous cells.

Advancing the nation’s energy security, while minimizing climate impact with biochemical research through the NWChemEx project, funded by the DOE’s Office of Science Biological and Environmental Research. Researchers are solving the molecular problems in biofuel production by developing models that optimize feedstock to produce biomass and analyze the process of converting biomass materials into biofuels.

Expanding the boundaries of physics with particle collision research in the ATLAS experiment, which uses the Large Hadron Collider (LHC), the world’s most powerful particle accelerator, sited at CERN, near Geneva Switzerland. Scientists study the complex products from particle collisions in very large detectors to deepen our understanding of the fundamental constituents of matter, including the search for evidence of dark matter.

“Polaris is well equipped to help move the ALCF into the exascale era of computational science by accelerating the application of AI capabilities to the growing data and simulation demands of our users,” said Michael E. Papka, director at the ALCF. “Beyond getting us ready for Aurora, Polaris will further provide a platform to experiment with the integration of supercomputers and large-scale experiment facilities, like the Advanced Photon Source, making HPC available to more scientific communities. Polaris will also provide a broader opportunity to help prototype and test the integration of HPC with real-time experiments and sensor networks.”

The lab already has some experience with HPE systems infrastructure, including Slingshot and HPE Performance Cluster Manager (HPCM). A testbed rack called Crux includes AMD Rome processors, Slingshot technology and HPCM. “In that sense, Polaris is another testbed to continue testing HPCM at scale and getting ready for Aurora’s arrival,” said Kumaran, “not just on the applications side, but also being able to test the system software and Slingshot.”

A wider goal, long-sought and steadily inching forward, is cross-platform code portability. Argonne has researchers working with NERSC (Berkeley Lab) and Codeplay (prominent SYCL supporter) to port SYCL and DCP++ to the A100 GPU. “If people are porting code to Aurora using SYCL or DCP++, they will be able to continue to support that programming model and not have to rewrite to OpenMP or MPI or CUDA to use on Polaris,” said Kumaran. “And similarly, we’ve also explored supporting HIP on this platform (Polaris), and so if you have CUDA support, and you are developing with CUDA on Summit, or for future AMD-based platforms, with Frontier, then you can use that. And finally, we are also exploring SYCL and DCP++ for AMD GPUs [in collaboration with Oak Ridge and Codeplay]. And so if you’re looking for an alternate solution to CUDA and HIP on AMD GPUs and you want to run your DCP++ code, we have a proof-of-concept working on that.”

Polaris has been delivered and is currently being installed. Deployment for early science work related to exascale-readiness is expected in the first quarter of next year.

Polaris rendering.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire