Quantum Computer Market Headed to $830M in 2024

By John Russell

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming at a blurring rate. To mix metaphors, think of the quantum computing technology community as being in its own state of superposition and not really ready to coalesce into a coherent picture.

Bob Sorensen, chief quantum computing analyst, Hyperion Research, took a creditable stab at describing quantum computing sector at last week’s virtual HPC User Forum. There’s already QC market, albeit small now (~$320M in 2020) but which is projected to grow to $830M in 2024 (27 percent CAGR) according to Hyperion.

Sorensen focused broadly on market dynamics and steered clear of deep technology dives. A fair amount of the material was familiar from the spring HPCUF but there were updates too. He set the tone with this early comment on competing qubit technologies (semiconductor, trapped ions, optical, topological, etc.), “I like to say, perhaps somewhat provocatively, [that] if we could move the clock forward, say 15 years, the quantum modality of choice may not yet be on this list.”

Many observers would agree. Quantum information sciences R&D and its commercialization efforts are expanding so quickly that it’s difficult to say much about what the final quantum computing systems or application landscape will look like. What does seem clear is that there will indeed be a quantum sector of some sort. Sorensen presented charts, packed tightly with QC participants (government, corporate, regional) and QC technologies to emphasize the scope of the current frenzy if not the details.

“If there’s one takeaway that I’d like everyone to have from today’s discussion, it’s that quantum computing is not a standalone technology. It’s not ‘here’s classical computing on one island, and here’s quantum computing on another island.’ Quantum computing is more about another tool in the toolkit for advanced computing. Think of it as a version of a GPU in the sense that quantum computing offers some significant performance advantage for a key but narrow set of applications that ultimately complements the overall advanced computing architecture but will not supplant it.”

Let’s start with the global nature of the market and dominant players:

Citing the number of papers published by country of origin, Sorensen said, “This is not something that the U.S. owns by default, based on 40 years of its leadership. I did a very simple query (of quantum-related paper publications) about two months ago, and ended up receiving about 17,000, high quality R&D publications in the last five years. What I find interesting is the number of other countries in the world that are posting reasonable amounts of research activity in these publications. This is an international phenomenon.”

“You see countries like India and Canada and the U.K., [that are] not exactly IT powerhouses but are playing quite aggressively to get involved early on in the quantum computing sector,” Sorensen said.

He cautioned against assuming China is leading in research based on its showing on journals: “The reason the Chinese academies show up at the top is because they’re responsible for the preponderance of what’s going on in China. If you want to know what’s going on in China, you basically look at these two organizations as kind of a harbinger of what the rest of the nation is doing. Whereas in the U.S., which had about the same number of R&D publications, it’s a much broader base of more research facilities, universities, and government research facilities.”

Sorensen cited the growth of non-competitive collaborative efforts going on around the world. One example is the Quantum Economic Development Consortium in the U.S., which is funded by the U.S. government. “It is still a very free-flowing, open organization to foster the non-competitive aspects of quantum computing,” said Sorensen. We’re seeing the same things with a quantum industry consortium in Europe, where we have a mix of QC suppliers and major industrial players.”

In Japan, he said, telecommunications giant NTT has initiated a cooperative organization of 11 leading Japanese industrial players.

“We saw the same thing in the last few months in Germany [where] ten industrial players – including automakers, advanced manufacturing, and investment houses – are involved in thinking about how use cases can drive what we see in terms of quantum computing offerings from the suppliers,” said Sorensen.

Virtually all of these efforts are intended to nourish regional and national infrastructures for commercial quantum computing. On their agenda are quantum tech standards, supply-chain frameworks, financing, use case identification and go-to-market strategies. Their rather recent formation reflects the growing worldwide expectation that quantum computing and its related quantum technologies will make the leap to commercialization soon, though no one seems to have a firm handle on when that will be.

“The timeframes are unpredictable at this point. The sector makes advances in leaps and bounds, or then it can sit still for a little while,” said Sorensen

Hyperion’s research, said Sorensen, suggests potential quantum computing users are willing to make the switch to quantum technology for about a four-to-five-year jump over that normal HPC advances would offer. He said that’s about 50x improvement over current methods. “[They] are saying, “All I need is a four-to-five-year boost over my competitors, based on what I would see in the classical world. You give me a 50x performance improvement, [and] that’s really what you’re going to get in classical HPC if you wait five years [for HPC advances]. [This is an] important point to make to suppliers in the quantum sector, that users want competitive advantage and economic payoff and aren’t looking for [too] aggressive, far reaching potentials (such as quantum supremacy),” Sorensen said.

So how does the quantum computing community get from here to there?

Quantum technology is not ready now for prime time agree most observers, although there are many “pilot/proto” applications and use cases being explored. One promising near-term trend is development of quantum-informed and quantum-inspired approaches. Zapata Computing, an example of the former, uses quantum computers to generate input (mostly random numbers) for use by classical systems. There are also a number of quantum-inspired optimization techniques being run on classical systems; these are quantum computing algorithms that have been adapted for use on classical digital systems. Of course, the pure-play quantum companies like Rigetti, IBM, and D-Wave all have vigorous commercial engagements at various stages of development.

Most of these are still in POC stage projects. Still, one has the sense that there are so many individuals, companies, academies, and governments frantically toiling away at quantum computing that accelerated progress is inevitable. We’ll see.

Sorensen cited the usual applications. He noted much of the attention has been around physical simulation (chemistry, materials science) where quantum computing’s inherent advantage of using superposition and entanglement should pay dividends. Optimization is another big class of problems being tackled and perhaps closer to near-term practical use.

“There’s also some interesting work going on in quantum accelerated machine learning capabilities to really help augment what we see going on in the classical world of machine learning, deep learning and other variants of artificial intelligence,” said Sorensen. “One of the most popular [right now] is the optimization opportunities in quantum – the ability to take existing algorithms or objective functions to figure out better ways to maximize an outcome, for example, figure out the best way to load a large group of luggage and other materials into the cargo hold of an Airbus airplane as it turns around at the gate,” he said.

All summed up, Sorensen said, “One of the interesting things that makes the sector so amazing and confusing and interesting to watch is development is happening in many directions and [in] parallel,” said Sorensen. “[W]e’re seeing different hardware qubit modalities. People are thinking about interconnects. If we build 1000-qubit processors, how can we configure that to a million-processor-system? There’s the idea of quantum LANs. How do we think about the overall architecture of QC to really start to field systems that can actually deliver impressive performance in an industrial [setting].”

Near-term, many challenges remain for the quantum computing sector. Not only the technology itself, but workforce issues and business models. Stay tuned.

Slides from Bob Sorensen’s presentation at the fall 2021 HPC User Forum

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Intel Announces Sapphire Rapids with HBM, Reveals Ponte Vecchio Form Factors

June 28, 2021

From the ISC 2021 Digital event, Intel announced it will offer Sapphire Rapids with integrated HBM, detailed new Xe-HPC GPU form factors, and introduced commercial support for DAOS (distributed application object storage). Intel also announced a new Ethernet solution, aimed at smaller-scale HPC. With integrated High Bandwidth Memory (HBM), the forthcoming Intel Xeon Scalable processors... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire