Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

By Tiffany Trader

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching the Cerebras Cloud @ Cirrascale platform, providing access to Cerebras’ CS-2 Wafer-Scale Engine (WSE) system through Cirrascale’s cloud service.

The physical CS-2 machine – sporting 850,000 AI optimized compute cores and weighing in at approximately 500 lbs – is installed in the Cirrascale datacenter in Santa Clara, Calif., but the service will be available around the world, opening up access to the CS-2 to anyone with an internet connection and $60,000 a week to spend training very large AI models.

“For training, we have not found latency to be an issue,” said Cirrascale CEO PJ Go in a media pre-briefing, held in conjunction with the AI Hardware Summit this week.

 

Feldman agreed, adding, “If you’re going to run your training for 20 hours or more, the speed of light to get from Cleveland to San Jose is probably not too big issue.”

Cirrascale’s Cerebras Cloud customers will gain full access to Cerebras’ software and compiler package.

“The compiler toolset sits underneath the cloud toolset that Cirrascale has developed,” said Feldman. “And so you will enter, you’ll gain access to a compute cluster, storage, a CS-2; you will run your compile stack, you will do your work, you will be checkpointed and stored in the Cirrascale infrastructure, it will be identified so you can get back to that work later. All of that has been integrated.”

The environment supports familiar frameworks such as TensorFlow and PyTorch, and the Cerebras Graph Compiler automatically translates the practitioner’s neural network from their framework representation into a CS-2 executable. This eliminates the need for cluster orchestration, synchronization and model tuning, according to Cerebras.

With a weekly minimum buy-in — pricing is set at $60,000 per week, $180,000 per month or $1,650,000 per year — Cirrascale customers get access to the entire CS-2 system. “The shareable model is not for us,” said Feldman. The raison d’etre of the wafer-scale system is “to get as big of a machine as you can to solve your problem as quickly as you can,” he told HPCwire.

Discounts are provided for multi-month or multi-year contracts. Cerebras does not disclose list prices for its CS systems, but buying a CS-2 system outright will set you back “several million dollars,” according to Feldman.

Both CEOs agreed that “try before you buy” was one of the motivations of the Cerebras Cloud offering, converting renters who are impressed by what CS-2 can do into buyers of one or more systems. But the companies also expect a good share of users to stick with the cloud model.

A preference for OPEX is one reason, but it’s also an issue of skills and experience. Driving home this point, Feldman said, “A little known fact about our industry is how few people can actually build big clusters of GPUs, how rare it is — the skills that are necessary, not just the money. The skills to spread a large model over more than 250 GPUs is probably resident in a couple of dozen organizations in the world.”

Cerebras Cloud offers to streamline this process by making the performance available via a cloud-based hardware and software infrastructure with the billing, storage and other services accessible via the Cirrascale portal. “It was an obvious choice for us in extending our reach to different types of customers,” Feldman said.

Cerebras’ first CS system deployments were on-premises in the government lab space (the U.S. DOE was a foundational win, announced at the 2019 AI Hardware Summit) and commercial sites, mainly pharma (GlaxoSmithKline is a customer). By making CS-2 accessible as a hosted service, Cerebras is going after a broader set of organizations, from startups to Fortune 500 companies.

“We’ve been working on this partnership for some time,” said Andy Hock, vice president of product at Cerebras Systems, in a promo video. “We’re beginning with a focus on training large natural natural language processing models, like BERT, from scratch and we’ll expand our offering from there.”

“The Cerebras CS-2 handles a type of workload that we cannot do on GPUs today,” said David Driggers, founder and CTO, Cirrascale. “[It’s] a very-large scale-up scenario, where we’ve got a model that just does not parallelize and yet it’s managing to deal with a very large amount of data. So the largest NLP models today require a tremendous amount of data input as well as a tremendous amount of calculation. This is very difficult to do on a [traditional] cluster due to the IO communication that is required. The Cerebras CS-2 allows us to leverage the very large memory space, the large built-in networking and the huge amount of cores to be able to scale NLP to heights that we haven’t been able to do before.”

Analyst Karl Freund (principal, Cambrian AI Research), who was on the pre-briefing call, gave the partnership his nod of approval. “Cerebras seems to be firing on all cylinders of late, with customer wins, the 2nd gen WSE, and most recently their audacious claims that they are building a brain-scale AI 1000 times larger than anything we have seen yet,” he told HPCwire.

“What you have is a very hot commodity (their technology) that a lot of people want to experiment with, but who do not want to spend the very big bucks it would take to buy and deploy a CS-2.  Enter Cirrascale, and their CS-2 cloud offering, which will make it easier and at least somewhat more affordable for scientists to get their hands on the biggest, fastest AI processor in the industry. This will undoubtably create new opportunities for Cerebras going forward, both in the cloud and on-premises.” 

Asked about the risk that today’s AI silicon won’t be suitable for future AI models, Freund said, “if anything, Cerebras is the company who’s architecture is skating to where the puck is going: huge AI.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Virga: Australia’s New HPC and AI Powerhouse

July 11, 2024

Australia has officially added another supercomputer to the TOP500 list with the implementation of Virga. Officially coming online in June 2024, Virga is the newest HPC system to come out of the Australian Commonwealth S Read more…

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and implementation phases of the Quantum Quantum Science and Technolo Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the software, and selecting the best user interface. The National Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three of the 10 highest-ranking Top500 systems, but some other ne Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Leading Solution Providers

Contributors

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire