The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

By John Russell

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesting, Intel demonstrated x86 competence for inferencing and Arm also showed up in the datacenter, not just the edge category. IBM, though not an MLPerf participant, is also jumping into the host CPU-as-inference engine camp. Can AMD be far behind?

Make no mistake, Nvidia GPUs remain the kings of pure-play AI workloads. They have dominated the MLPerf benchmarks (training and inference) since the start in 2018. “We run every workload, every scenario, every use case for both datacenter and edge in MLPerf. And we are actually the only company that does that,” said David Salvator, senior product manager, inference and cloud, Nvidia, in a pre-briefing yesterday.

That said, there seems to be a new dynamic arising around the use of host CPUs for inferencing. The basic idea is that more modest inferencing demands are proliferating inside many general-purpose workloads, where the host CPU has sufficient capability for the job and is less expensive. CPU vendors are betting this will represent a substantial market. This approach contrasts with the current accelerator-driven paradigm in which AI workloads are offloaded to an accelerator, most often a GPU.

Here’s the pitch from Jordan Plawner, director of AI products and business at Intel:

“Nvidia has been great at saying you must use an Nvidia GPU to run AI, period, full stop. We are just trying to enlarge that conversation and say there’s many, many use cases [that don’t require a GPU]. My first job is to make sure I never give a developer an excuse to not use a Xeon processor because something is not working well, because something was optimized for GPUs, [and] because that’s what everyone’s been doing. [We] have a few hundred people making sure that everything works well out of the box on Xeon.

“It is about the use case. So inferencing, specifically, is 80 percent of the time just an underlying function. The typical kind of use case is live-streaming inferencing in which there’s a web tier app, it’s always making decisions or recommendations of some kind. Someone – a business or a consumer – is pinging it with a request or on a thread and I’m making a decision to use AI to augment [or] automate the decision or to make a recommendation, and [doing that] is only going to [require] so many threads and requests on that system a second.

“We talk about when AI is in the workload or as part of the workload, not the full workload itself. The mission of Xeon is just to kind of close that gap with the accelerators, and meet the SLA of the customer, who say, “I need to infer speech translation, images, by x number of inferences per second, per server, and I only have six cores to do it.” We do this all the time and say we can do that in two cores or four cores.”

Broadly Intel demonstrated significant improvement gen-over-gen (Ice Lake over Cooper Lake) in the Xeon line. Plawner cited Intel’s DL Boost including vector neural network instructions (VNNI) in its INT8-based submissions on all workloads as drivers of performance gains. He said Intel expects a many-fold jump in inference performance with Sapphire Rapids and that Intel is working with systems makers to participate in future MLPerf inference runs. Presumably, it will do the same with its forthcoming Ponte Vecchio GPU. Intel has posted a blog with more detailed MLPerf results.

MLCommons, the parent organization for MLPerf, reported that the latest inference benchmark round “had received submissions from 20 organizations and released over 1,800 peer-reviewed performance results for machine learning systems spanning from edge devices to datacenter servers. This is the second round of MLPerf Inference to offer power measurement, with over 350 power results.” The MLPerf inference benchmark is run twice yearly (link to spring HPCwire coverage).

Submitters in this MLPerf inference round included Alibaba, Centaur Technology, cTuning, Dell, EdgeCortix, Fujitsu, FuriosaAI, Gigabyte, HPE, Inspur, Intel, Krai, Lenovo, LTechKorea, Nettrix, Neuchips, Nvidia, OctoML, Qualcomm, and Supermicro (link to full results).

Given the range of tests and system configurations, it is difficult to draw easy comparisons between systems. The devil is in the details and requires digging them out. Secondly, other AI accelerators are largely lacking. The addition of power metrics to the inference exercise starting last spring is seen as a plus although entries in that category were down. Making sense of the mass of numbers can be confusing

As an example, the top performer on the ResNet workload was Qualcomm cloud (Gigaybte server using AMD CPU and AI 100 PCIe/HHHL) with 310,064 queries/s. Inspur took the next two spots with an Intel (Xeon 83538) system and AMD (Epyc 7742) CPU servers, each using A100 SXM 80 GB accelerators. They had 288,050 and 280,051 queries/s. Dell: 272,301 q/s. Gigabyte and Supermicro tied (260 q/s), and Qualcomm, Inspur and Nvidia were also top performers at the edge.

System and chip vendors at the pre-briefing reported that more buyers are asking about MLPerf and including it in RFPs which is interesting. To some extent, said David Kanter, MLCommons’ executive director, just completing the exercise can be as important as the score in that it demonstrates all elements of a system are working as stated.

Qualcomm is vigorously promoting its strong showing and its commitment to MLPerf in a blog:  “Qualcomm Technologies has significantly expanded its submission to MLPerf benchmarks. It has doubled the number of platform submissions from Edge to Cloud. The network coverage has expanded to include language processing (BERT) and added SSD ResNet-34 to the vision networks. It total, 82 benchmarks results were submitted, including 36 power results.

“As AI and ML accelerate industry-wide mass deployments, it is becoming very evident that the solutions must offer a better value proposition in addition to highest performance. Inference-per-Second-per-Watt (I/S/W) is emerging as the most important benchmark for deployments that provide the best value-to-service for providers and end users. Qualcomm Technologies has reinforced its leadership in power efficiency with its MLPerf v1.1 submission. On servers configured with 8x Qualcomm Cloud AI 100 accelerators, Qualcomm Technologies has demonstrated highest 197 I/S/W for ResNet-50.”

Overall the steady performance advance being documented by MLPerf still tends to reflect Nvidia’s steady progress, which this time resulted mostly from software advances, said Salvator. He also touted the performance of Arm-based servers, paired with Nvidia GPUs.

“For the first time ever in the industry, we’re delivering datacenter category results on an Arm-based server. We worked with Ampere and their Altra CPUs (Q80-30 CPU in a single socket) in a Gigabyte server with an A100 and we’re able to deliver results that are running pretty much neck and neck with a similarly configured x86 server. That represents an important milestone. First, it shows that Arm, as an acceleration platform, can deliver performance just about on par with a similarly configured x86 server. It’s also a statement about the readiness of our software stack to be able to run the Arm architecture in a datacenter environment.”

He also noted that Nvidia’s standard Triton inference server software delivered nearly as good performance as custom code.

“The basic takeaway here is Triton gets great performance, even relative to highly customized implementations. [It] also makes it much easier for infrastructure managers to deploy networks, because it’s highly integrated into Kubernetes. You can think of Triton as living at the base of the software stack and supports multiple networks and will allow you to do things like automatic load balancing as well as auto scaling,” said Salvator.

Of note was Nvidia’s leveraging the multi-instance GPU (MIG) capability of the Ampere GPU architecture. Both the A100 (7 instances) and A30 support (4 instances). Nvidia demonstrated the ability to run all seven MLPerf workflows at the same time on an A100 using MIG.

The MLPerf 1.1 inferencing suite includes seven workloads (shown below) covering recommendation, NLP, imaging, and object detection. There was one change from the last exercise – the multiple stream scenario was omitted.

The relative lack of competitors to Nvidia and the limited number of participants overall remains an issue for MLPerf. Google has in the past participated but didn’t in this inferencing round. Likewise the newer AI system/accelerator players such as Cerebras and Graphcore, to name just two, have yet to participate. How this will influence MLCommons’ long-term plans is unclear. MLCommons has broader aspirations than benchmarking.

As described by Kanter, the young organization would also like to play a role in hosting/providing datasets and best practices.

“The Datasets Working Group creates and hosts public datasets that are large, actively maintained, and permissively licensed – especially for commercial use. We aim to develop a center of expertise and supporting technologies that dramatically improves the quality and reduces the cost of new public datasets. We believe that a modest investment in public datasets can have impressive ROI in terms of machine learning innovation and market growth. The Datasets Working Group’s first project is the People’s Speech dataset, an open speech recognition dataset that is approximately 100x larger than existing open alternatives. We are currently validating the utility of the data in preparation for public release,” Kanter told HPCwire.

“The best practices working group looks at opportunities to address common and cross-cutting needs of AI practitioners. The starting point for this effort is to reduce friction for machine learning by ensuring that models are easily portable and reproducible. This initial starting point is the MLCube project, where we are creating the source code and specifications to achieve this,” he said.

Kanter described MLCube as a shipping container that enables researchers and developers to easily share the software that powers machine learning. “MLCube is a set of common conventions for creating ML software that can just ‘plug-and-play’ on many different systems,” said Kanter.

Link to MLCommons release, https://mlcommons.org/en/news/mlperf-inference-v11/

Link to Nvidia blog on MLPerf results, https://blogs.nvidia.com/blog/2021/09/22/mlperf-ai-inference-arm/

Link to Intel blog on MLPerf results, https://www.intel.com/content/www/us/en/artificial-intelligence/posts/intel-mlperf-inference-performance.html

Link to Qualcomm blog on MLPerf results: https://www.qualcomm.com/news/onq/2021/09/22/qualcomm-cloud-ai-100-emerges-fastest-ai-inference-solution-world

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire