Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

By John Russell

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its sixth annual Qubits 21 conference, Infosys partners with AWS Braket, and a U.K. consortium develops a new abstraction layer. He’s a recap of just a few recent QC reports.

Let’s start with IonQ-led efforts to bring practical quantum computing to financial services. Risk analysis is at the heart of many FS activities and Monte Carlo simulation is typically the tool of choice. One challenge with running Monte Carlo simulation algorithm on NISQ (noisy intermediate scale quantum) computers is that it requires very deep circuits. So far, NISQ systems can’t reliably provide deep circuits.

Working with Goldman Sachs and QC Ware, IonQ released a paper (Low depth amplitude estimation on a trapped ion quantum computer) demonstrating progress. Here’s an excerpt:

“Recent works have succeeded in somewhat reducing the necessary resources for such algorithms, by trading off some of the speedup for lower depth circuits, but high quality qubits are still needed for demonstrating such algorithms. Here, we report the results of an experimental demonstration of amplitude estimation on a state-of-the-art trapped ion quantum computer. The amplitude estimation algorithms were used to estimate the inner product of randomly chosen four-dimensional unit vectors, and were based on the maximum likelihood estimation (MLE) and the Chinese remainder theorem (CRT) techniques.

“Significant improvements in accuracy were observed for the MLE based approach when deeper quantum circuits were taken into account, including circuits with more than ninety two-qubit gates and depth sixty, achieving a mean additive estimation error on the order of 10−2. The CRT based approach was found to provide accurate estimates for many of the data points but was less robust against noise on average. Last, we analyze two more amplitude estimation algorithms that take into account the specifics of the hardware noise to further improve the results.”

In the conclusion, they write: “Note that we restricted the experiments to four qubits, because our main goal was to probe the regime where the evaluation oracle is invoked a large number of times in a noisy setting, achieving up to fifteen sequential oracle invocations with still excellent results. A next step would be to establish tradeoffs between circuit depth and number of oracle calls in an experimental setting, as theoretically proved in, and this may soon become feasible with further improvements in hardware.”

The FS world is reluctant to say much about technology advances being put to use – the whole point is to keep an advantage – and there’s a fair amount of work by many parties seeking to develop FS apps for use on quantum computers. Perhaps modest, real-world FS apps on quantum computers are closer than we think.

Broadly IonQ has been busy. It also announced today a new partnership with GE Research to explore the impact of quantum computing in risk analysis applications. IonQ said, “The initiative is expected to lay the groundwork for risk management across key sectors including finance, and government.”

The company also reported, “Over the past six months, IonQ has demonstrated technology that is expected to allow the Company to significantly scale the power of its quantum computers, has expanded its footprint to all major cloud providers and major quantum developer languages, has launched major commercial partnerships with partners like Accenture, Softbank and the University of Maryland, and has tripled its bookings expectations for 2021.”

Triple booking is good.

Cambridge Quantum Advances Quantum Chemistry Simulation

Solving quantum chemistry problems in search of new materials and drugs is expected to be an important application for quantum computers. It’s an area where the inherent probabilistic nature of quantum computing (think superposition) mimics nature and is thought be able to provide a more realistic simulation of physical systems.

Cambridge Quantum Computing is another young QC company pushing that envelope, reporting work this week that improves the accuracy of quantum system modeling and mitigates some of the errors associated with those calculations. The work, Quantum hardware calculations of periodic systems: hydrogen chain and iron crystals, is published online.

Running quantum algorithms on real hardware is essential for understanding their strengths and limitations, say the researchers, especially in the noisy intermediate scale quantum (NISQ) era.

“We select two periodic systems with different level of complexity for these calculations. One of them is the distorted hydrogen chain as an example of very simple systems, and the other one is iron crystal in the BCC and FCC phases as it is considered to be inaccessible by using classical computational wavefunction methods. The ground state energies are evaluated based on the translational quantum subspace expansion (TransQSE) method for the hydrogen chain, and periodic boundary condition adapted VQE for our iron models,” write the researchers, led by Kentaro Yamamoto of Cambridge Quantum.

Besides “usual” mitigation measures, “We apply a novel noise mitigation technique, which performs post-selection of shot counts based on Z2 and U1 symmetry verification. By applying these techniques for the simplest 2 qubit iron model systems, the energies obtained by the hardware calculations agree with those of the state-vector simulations within ∼5 kJ/mol. Although the quantum computational resources used for those experiments are still limited, the systematic resource reduction applied to obtain our simplified models will give us a way to scale up by rolling approximations back as quantum hardware matures.”

While the models examined are simple, the research team believes their results “set an important starting point for systematic improvement of quantum chemical calculations on quantum computers by rolling back the simplification procedure presented in this paper.”

D-Wave Meeting to Showcase Use Cases

D-Wave’s Advantage chip

D-Wave systems is one of a few pioneers in quantum computing. Its quantum annealing approach, though sometimes criticized, has proven applicable in many optimization use cases and D-Wave has one of the quantum community’s more expansive and mature industry engagement programs. Its annual user meeting Qubits will be held October 5-7. It will be virtual again this year and there is no charge to attend.

On the agenda are D-Wave’s technology roadmap as well as user/practitioner presentations in finance, energy, life sciences, manufacturing / logistics, mobility, retail. Here’s a link to the agenda. D-Wave and IBM are, at least so far, the only companies to have systems for sale and intended for on-premise use. Most of the QC community provides access to their systems via a web portal of some kind. D-Wave and IBM, of course, also do this.

Infosys Moves into Quantum Computing

India-based global IT services and consulting firm announced a strategic collaboration with AWS this week to develop quantum computing capabilities and use cases. Like many IT services firms, Infosys has been aggressively expanding its cloud expertise and said the quantum effort would be part of its Cobalt cloud offering and use AWS Braket quantum portal and services.”

According to the official announcement, “Infosys will look to build, test, and evaluate quantum applications on circuit simulators and quantum hardware technologies using Amazon Braket. This will enable researchers and developers to experiment and study complex computational problems as quantum technologies continue to evolve. Enterprises will get access to use cases for rapid experimentation and can explore how quantum computing can potentially help them in the future in a variety of areas, assess new ideas and plan adoption strategies to drive innovation. The use of Amazon Braket by Infosys aims at getting businesses ready for a future where quantum computers will impact business.”

U.K. Consortium Develops HAL to Facilitate QC Collaboration

A U.K. consortium led by quantum software start-up Riverlane and the National Physical Laboratory (NPL) has developed an open-source hardware abstraction layer (HAL) that makes software portable across different quantum computing hardware platforms, according to Riverlane.

This is an idea being worked on by many parties. It’s not at all clear which qubit technologies will eventually win out. Currently several different qubit technologies are in operation and more are being developed. It seems likely there will be a few different kinds of quantum computers, featuring different qubit technologies that are better suited for specific application areas. An abstraction layer to hide the underlying hardware complexity from developers will be essential for success, say many observers.

HAL, reports the consortium, “is designed to be portable across four leading qubit technologies: superconducting qubits, trapped-ion qubits, photonic systems and silicon-based qubits. It will allow high-level quantum computer users, such as application developers, platform and system software engineers, and cross-platform software architects, to write programs for quantum computers portable to these four qubit technologies while maximizing performance.”

Besides Riverlane and NPL, the consortium currently includes the U.K.’s quantum hardware companies, SeeQC, Hitachi Europe, Universal Quantum, Duality Quantum Photonics, Oxford Ionics, and Oxford Quantum Circuits, as well as U.K.-based chip designer, Arm.

The first specification of the HAL is ‘version 0’ and is freely accessible on Github. The consortium is seeking feedback from the quantum community, with the eventual aim of including the concepts into an international standard on which the community can build.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire