UCLA Researchers Report Largest Chiplet Design and Early Prototyping

By John Russell

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question.

Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. A different approach is to use chiplet technology in which various devices are mounted to a single silicon wafer using passive silicon-interconnect technology. This approach is more flexible, can scale, and offers significant cost advantages contends a new paper by researchers from UCLA and the University of Illinois, Urbana-Champaign.

The team of researchers[i] has designed and is now prototyping a “2048-chiplet, 14336-core waferscale processor” and their paper summarizing the work provides a good look at the benefits and challenges of the chiplet approach. The researchers will present the work at the Design Automation Conference (DAC 21) in December.

“To the best of our knowledge, this is the largest chiplet assembly based system ever attempted. In terms of active area, our prototype system is about 10x larger than a single chiplet-based system from Nvidia/AMD etc., and about 100x larger than the 64-chiplet Simba (research) system from Nvidia,” write the researchers.

The underlying premise is familiar. The “proliferation of highly parallel workloads such as graph processing, data analytics, and machine learning is driving the demand for massively parallel high-performance systems with a large number of processing cores, extensive memory capacity, and high memory bandwidth,” they state.

So far, heterogeneous architectures, predominantly based on “discrete packaged processors connected using conventional off-package communication links,” have been the dominant solution for dealing with the new workloads. There’s also a crop of new chips and systems aimed at these workloads. Cerebras’ WSE-2 is one example.

The researchers argue monolithic waferscale “chips cannot integrate components from heterogeneous technologies such as DRAM or other dense memory technologies. Moreover, in order to obtain good yields, redundant cores and network links need to be reserved on the waferscale chip,” write the researchers.

A chiplet strategy, they say, should be able to overcome some of these limits:

“A competing approach to building waferscale systems is to integrate pre-tested known-good chiplets (in this work, we call un-packaged bare-dies/dielets as chiplets) on a waferscale interconnect substrate. Silicon interconnect Fabric (Si-IF) is a candidate technology which allows us to tightly integrate many chiplets on a high-density interconnect wafer. Si-IF technology provides fine-pitch copper pillar based (10μm pitch) I/Os which are at least 16x denser than conventional μ-bumps used in an interposer based system, as well as ∼100μm inter-chiplet spacing. Therefore, it provides global on-chip wiring-like characteristics for inter-chiplet interconnects. Moreover, in a chiplet-based waferscale system, the chiplets can be manufactured in heterogeneous technologies and can potentially provide better cost-performance trade-offs.”

The figure shown below provides a good overview of the design.

As you would expect the chipset approach brings its own set of design challenges, which the team enumerated:

  • “How should we deliver power to all the flip-chip bonded chiplets across the wafer?
  • “How can we reliably distribute clock across such a large area?
  • “How can we design area-efficient I/Os when a large number of fine-pitch copper pillar-based I/Os need to be supported per chiplet, and how do we achieve very high overall chiplet assembly and bonding yield?
  • “What is the inter-chip network architecture and how do we achieve resiliency if a few chiplets fail?
  • “What is the testing strategy when I/O pads have small dimensions and how do we ensure scalability of the testing schemes?
  • “How can we design the chiplets and the substrate with the uncertainty and constraints of the manufacturing process?”

The paper walks through solution approaches and specific considerations for the overall architecture, compute chiplet, memory chiplet, and waferscale substrate selected. Also examined in detail are networking, power distribution, and testing infrastructure.

The team validated the system design and architecture by emulating a reduced-size multi-tile system on an FPGA platform. “We were successfully able to run various workloads including graph applications such as breadth-first search (BFS), single-source shortest path (SSSP), etc. on this system,” according to the paper.

It will be interesting to see how the prototype behaves.

Saptadeep Pal, one of the paper’s authors and a Ph.D. student at UCLA, told HPCwire, “A smaller silicon prototype is now up and running programs. The wafer scale prototype is currently being built. We are taking it one step at a time. The tapeout and system is a “first ever” in many aspects and being at a university, the time and dollar cost of respins is very high. The full waferscale system will probably take a few more months.”

Stay tuned.

Link to paper, https://nanocad.ee.ucla.edu/wp-content/papercite-data/pdf/c116.pdf

[i] Authors (Designing a 2048-Chiplet, 14336-Core Waferscale Processor)

Saptadeep Pal∗, Jingyang Liu†, Irina Alam∗, Nicholas Cebry†, Haris Suhail∗, Shi Bu∗, Subramanian S. Iyer∗, Sudhakar Pamarti∗, Rakesh Kumar†, and Puneet Gupta∗
∗Department of Electrical and Computer Engineering, University of California, Los Angeles
†Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Royalty-free stock illustration ID: 1675260034

Solving Heterogeneous Programming Challenges with SYCL

December 8, 2021

In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short "retirement," considers how SYCL will contribute to a heterogeneous future for C++. Reinde Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Quantum Origin, a service to deliver “completely unpredicta Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

AWS Solution Channel

Introducing AWS HPC Connector for NICE EnginFrame

HPC customers regularly tell us about their excitement when they’re starting to use the cloud for the first time. In conversations, we always want to dig a bit deeper to find out how we can improve those initial experiences and deliver on the potential they see. Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

Royalty-free stock illustration ID: 1675260034

Solving Heterogeneous Programming Challenges with SYCL

December 8, 2021

In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short "retirement," considers how SYC Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Q Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire