UCLA Researchers Report Largest Chiplet Design and Early Prototyping

By John Russell

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question.

Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. A different approach is to use chiplet technology in which various devices are mounted to a single silicon wafer using passive silicon-interconnect technology. This approach is more flexible, can scale, and offers significant cost advantages contends a new paper by researchers from UCLA and the University of Illinois, Urbana-Champaign.

The team of researchers[i] has designed and is now prototyping a “2048-chiplet, 14336-core waferscale processor” and their paper summarizing the work provides a good look at the benefits and challenges of the chiplet approach. The researchers will present the work at the Design Automation Conference (DAC 21) in December.

“To the best of our knowledge, this is the largest chiplet assembly based system ever attempted. In terms of active area, our prototype system is about 10x larger than a single chiplet-based system from Nvidia/AMD etc., and about 100x larger than the 64-chiplet Simba (research) system from Nvidia,” write the researchers.

The underlying premise is familiar. The “proliferation of highly parallel workloads such as graph processing, data analytics, and machine learning is driving the demand for massively parallel high-performance systems with a large number of processing cores, extensive memory capacity, and high memory bandwidth,” they state.

So far, heterogeneous architectures, predominantly based on “discrete packaged processors connected using conventional off-package communication links,” have been the dominant solution for dealing with the new workloads. There’s also a crop of new chips and systems aimed at these workloads. Cerebras’ WSE-2 is one example.

The researchers argue monolithic waferscale “chips cannot integrate components from heterogeneous technologies such as DRAM or other dense memory technologies. Moreover, in order to obtain good yields, redundant cores and network links need to be reserved on the waferscale chip,” write the researchers.

A chiplet strategy, they say, should be able to overcome some of these limits:

“A competing approach to building waferscale systems is to integrate pre-tested known-good chiplets (in this work, we call un-packaged bare-dies/dielets as chiplets) on a waferscale interconnect substrate. Silicon interconnect Fabric (Si-IF) is a candidate technology which allows us to tightly integrate many chiplets on a high-density interconnect wafer. Si-IF technology provides fine-pitch copper pillar based (10μm pitch) I/Os which are at least 16x denser than conventional μ-bumps used in an interposer based system, as well as ∼100μm inter-chiplet spacing. Therefore, it provides global on-chip wiring-like characteristics for inter-chiplet interconnects. Moreover, in a chiplet-based waferscale system, the chiplets can be manufactured in heterogeneous technologies and can potentially provide better cost-performance trade-offs.”

The figure shown below provides a good overview of the design.

As you would expect the chipset approach brings its own set of design challenges, which the team enumerated:

  • “How should we deliver power to all the flip-chip bonded chiplets across the wafer?
  • “How can we reliably distribute clock across such a large area?
  • “How can we design area-efficient I/Os when a large number of fine-pitch copper pillar-based I/Os need to be supported per chiplet, and how do we achieve very high overall chiplet assembly and bonding yield?
  • “What is the inter-chip network architecture and how do we achieve resiliency if a few chiplets fail?
  • “What is the testing strategy when I/O pads have small dimensions and how do we ensure scalability of the testing schemes?
  • “How can we design the chiplets and the substrate with the uncertainty and constraints of the manufacturing process?”

The paper walks through solution approaches and specific considerations for the overall architecture, compute chiplet, memory chiplet, and waferscale substrate selected. Also examined in detail are networking, power distribution, and testing infrastructure.

The team validated the system design and architecture by emulating a reduced-size multi-tile system on an FPGA platform. “We were successfully able to run various workloads including graph applications such as breadth-first search (BFS), single-source shortest path (SSSP), etc. on this system,” according to the paper.

It will be interesting to see how the prototype behaves.

Saptadeep Pal, one of the paper’s authors and a Ph.D. student at UCLA, told HPCwire, “A smaller silicon prototype is now up and running programs. The wafer scale prototype is currently being built. We are taking it one step at a time. The tapeout and system is a “first ever” in many aspects and being at a university, the time and dollar cost of respins is very high. The full waferscale system will probably take a few more months.”

Stay tuned.

Link to paper, https://nanocad.ee.ucla.edu/wp-content/papercite-data/pdf/c116.pdf

[i] Authors (Designing a 2048-Chiplet, 14336-Core Waferscale Processor)

Saptadeep Pal∗, Jingyang Liu†, Irina Alam∗, Nicholas Cebry†, Haris Suhail∗, Shi Bu∗, Subramanian S. Iyer∗, Sudhakar Pamarti∗, Rakesh Kumar†, and Puneet Gupta∗
∗Department of Electrical and Computer Engineering, University of California, Los Angeles
†Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire