It’s Time for Real-World AI on the Edge

By Justin Fittro, Engineer, Silicon Mechanics

October 13, 2021

Artificial Intelligence has been a key talking point in the high-performance computing and computer science communities for decades now.

First it was a thought experiment and theoretical discussion point, but in recent years, it has become a practical area of focus for many scientists, researchers, and engineers, as well as businesses, universities, and government agencies. As the shift from theory to practice accelerated, so too did the excitement and scope of the expected impact of this technology on our society.

Autonomous vehicles, just-in-time maintenance, and real-time image processing are just a few of the ways you can apply AI at the edge. These and many other use cases are considered realistic deployments of complex deep learning training and inference models.

Until recently, these technologies have relied on large datacenters and inefficient algorithms to build, train, and run these models. For example, a decade ago, IBM’s Watson became famous as one of the first modern AI systems. It required ninety 4U servers to generate 80 TFLOPs of performance. But today, you can beat that performance with just a handful of white box GPU-accelerated servers.

This growth in system efficiency and performance has created an environment in the datacenter where machine learning and deep learning models can thrive. Simultaneously, the barrier to entry into AI workflows is being lowered, opening the doors to new use cases, algorithms, and benefits from AI.

Still, we haven’t seen the world-altering effects of AI outside of digital experiences like social media and search engines. What is keeping more tangible use cases like autonomous vehicles from wide-scale adoption? Challenges in edge computing.

Changing the Edge Data Paradigm

Historically, datacenter environments have had the distinct advantage of having large amounts of equipment, power, cooling, physical space, data storage, and high-performance networking available to provide ever-increasing levels of performance.

Trying to create similar performance at the edge has been a key challenge because engineers lose the luxuries of large, power-hungry, and loud clusters. Edge devices have environmental, operational, and practical limitations that are not present in the controlled environment of a datacenter.

A well-trained and efficient AI model allows lower-power edge devices to handle inference tasks, but they are unable to also train and improve their own algorithms. Instead, workflows must rely on communication between edge devices and the datacenter.

Machine learning and deep learning rely on huge volumes of data that must be stored and processed. To use these technologies at the edge requires a tiered processing system. This allows data to be uploaded to the datacenter for processing, where algorithms can be further refined and downloaded to the edge device. That device, in turn, becomes better able to act or output in a desired fashion, without having to wait for the datacenter to execute a decision. This positive feedback loop is key to building effective and powerful AI applications that can perform on the edge.

Multiple forces are converging to allow this model to operate practically.

Technologies Enabling AI on the Edge

Processing power for AI has always been a limiting factor. Now, however, thanks to GPU acceleration and great advances in CPU performance and efficiency, that has changed. The state-of-the-art has moved so much that traditional chip manufacturers are creating processors that are much faster and more efficient than chips from just a few years ago, making them well-suited for edge applications. Some manufacturers are going so far as to make -specific processors for AI on the edge.

Because of these new capabilities, the overall cost of performance has come down substantially in recent years. This is a critical issue for organizations looking to deploy AI on the edge, since the sheer number of potential edge devices that can run AI far exceeds the number of datacenters.

Another area where historical attempts at AI on the edge have fallen short is in the speed and reliability of communication between the datacenter and the edge. For instance, an autonomous vehicle is responsible for the safety of passengers, pedestrians, and other vehicles. It cannot depend on a slow or unreliable network to operate properly. Fortunately, new 5G wireless, wide-area networks will enable workloads that will drive demand for AI and Compute at the edge.

Building Edge Clusters

Just because something is possible does not mean it is practical. Organizations looking to implement AI at the edge often face an uphill battle. Without the proper expertise, developing optimized datacenter systems for machine learning training and designing the necessary edge equipment for inference can be unrealistic for most teams.

Ensuring you have a properly balanced, high-ROI cluster for your AI workload is difficult. But the problem becomes even more challenging when planning for the large amounts of data coming in from hundreds or thousands of edge devices.

Then, if you’re able to build that system efficiently, you still need to solve for a completely different technological problem: edge device design. Commercial, off-the-shelf hardware is rarely capable of providing the optimal solution for specific workload needs, let alone the additional environmental and form factor challenges edge clusters face.

For example, what COTS system can operate in extreme temperature or weather conditions? What about safety and security aspects like operating temperatures or data encryption? If you find you need to design a custom device, how do you ensure it has everything you need while meeting regulatory requirements?

These are important things to consider as you plan for an edge AI or inference project. Silicon Mechanics and our partner Comark have many decades of experience in datacenter and ruggedized edge solution design experience between them. Together, we’ve put together a consideration guide on preparing for 5G edge computing that covers many of the key decisions organizations must make when deploying AI on the edge.

Get the white paper here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire