MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

By Todd R. Weiss

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming.

Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth – helmed by ex-Nervana, ex-Intelite Naveen Rao – and is now preparing to launch a cloud-based neural network training system that aims to attack the problems at the algorithmic and systems levels.

The idea is to make machine learning more efficient through a composition – a mosaic – of methods that together accelerate and improve training, the company announced in an Oct. 13 blog post from its founders.

MosaicML’s core idea is that since it is expensive to train machine learning models in the cloud, in datacenters or on-premises, that the answer lies in eliminating inefficiencies in the learning process.

The startup has built two components that will be part of its future product offering, Naveen Rao, the CEO and co-founder, told EnterpriseAIComposer is an open-source library of methods for efficient ML training that can be brought together into “recipes,” starting with some 20 different methods curated and rigorously benchmarked for their performance benefits. Additional methods will be added as the product matures.

The other MosaicML component is Explorer, a visualization tool and interface that gives enterprise developers the ability to simulate, map out and choose the best routes for running models by comparing costs, quality and the time that will be needed to run the experiments. Explorer is designed to give users a visualization of the measured trade-offs of cost, time, and quality across thousands of training runs on standard benchmarks. Users can filter by method, cloud and hardware type to reach their optimal operating test protocols.

“The key here is that these techniques actually make the training process more compute efficient,” said Rao.

The idea and need for MosaicML came out of the rise of AI, machine learning and the steps that were initially established to create and test models, he said. The original technologies were established over time, and they worked, but it turns out that there are better ways to do things, he added.

“It is like anything else,” said Rao. “[Data scientists] came up with something that basically works but was pretty inefficient. The deep learning world has been about showing that things can work and not be efficient, it did not really matter because compute was relatively cheap.”

The problem was it was only true when the models were small, said Rao.

“Once models got very big, the compute side of it actually got very expensive,” he said. Now we are at this inflection point where the models got very big and data sets are very large, so the expenses are now quite big. GPT-3 [the natural language AI model] cost $5 million to train – that was one single experiment that cost $5 million.”

That is where MosaicML began seeing its opportunity in the world of AI and machine learning.

“We are focused on enterprise companies whose core competency is not AI or ML, but they need to be able to use these techniques in a cost-effective manner to extract value from their data,” said Rao. “If you are Facebook or Google, you have a huge team who can do this, and they can spare the expensive computing and manage it on their own. They will eventually probably use these tools as well … but they do not really need us upfront. The enterprise is where we go first.”

MosaicML was incorporated on Dec. 1, 2020, and has raised $37 million from investors so far, including Lux Capital, DCVC, Future Ventures, Playground Global, AME, Correlation, E14 and several angel investors.

Rao said the company is having conversations with customers but that it has not yet made any sales. MosaicML released its open source library so potential customers and developers can use it and get a sense of its capabilities and features.

The company’s product, which has not yet been officially named, is expected to be available in the beginning of 2022 in a free version and in a paid, supported version.

“When you are training a model, all you really care about is cost,” he said. But later you begin to think about other factors, including how long things will take and how it will perform.

“This Explorer visualizer allows you to see the difference,” he said. “If I want to not pay as much and just do a bunch of experiments for cheap, I can do that, and predict very rationally where I will be when they are done. The idea is to give users tools to allow them to understand how much things cost. If they don’t have any idea, they really cannot plan, and it becomes very difficult to run these experiments.”

Initially, MosaicML will work on models that are being done in the cloud, said Rao, since those variables are easier to measure based on rate costs from each vendor. He said he expects similar capabilities will be available for on-premises uses in the future. “But we are not there yet.” He added.

Rao has been involved with AI for some time. He founded AI chip company Nervana Systems, which was acquired by Intel in 2016. He then joined Intel and started and ran Intel’s AI division, he said. Intel shuttered Nervana in early 2020 and Rao left the company.

Karl Freund, founder and principal analyst at Cambrian AI Research, told EnterpriseAI that MosaicML has chosen a viable approach to helping AI users.

“MosaicML is going after the model optimization problem,” he said. “Some optimizations, such as Nvidia TensorRT, optimize for specific hardware, but MosaicML is going after algorithmic optimization.”

That makes it model-specific and not hardware-specific, he said.

“AI hardware for training is very expensive and exotic technology,” said Freund. “If you can reduce training time by 50 percent, that reduces costs accordingly. And the client does not have to hire the super-high-priced talent, either.”

Another analyst, Addison Snell, CEO of Intersect360 Research, said that the popularity of AI “is bringing more organizations to high-performance computing for the first time, whether they think of it that way or not. And for any organization moving into HPC, model creation and optimization is one of the biggest challenges, certainly more so than simply getting access to hardware.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

HPC Pioneer Gordon Bell Passed Away

May 22, 2024

Legendary computer scientist Gordon Bell passed away last Friday at his home in Coronado, CA. He was 89. The New York Times has a nice tribute piece. A long-time pioneer with Digital Equipment Corp, he pushed hard for de Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC even earned a slide in Kathy Yelick’s opening keynote — Bey Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Core42 Is Building Its 172 Million-core AI Supercomputer in Texas

May 20, 2024

UAE-based Core42 is building an AI supercomputer with 172 million cores which will become operational later this year. The system, Condor Galaxy 3, was announced earlier this year and will have 192 nodes with Cerebras Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire