SPEC Introduces SPEChpc 2021Suite for Heterogeneous Systems

By John Russell

October 28, 2021

SPEC – the Standard Performance Evaluation Company – introduced its newest benchmark suite today, SPEChpc 2021, intended to measure “intense compute parallel performance across one or more nodes.” Founded in 1988, SPEC supports many benchmarks; one of the more familiar is SPEC CPU 2017 that is used to benchmark CPU performance. Given the rise of heterogeneous architectures with multiple accelerators, the addition of the SPEChpc benchmark is timely.

The new benchmark suite has been in the works for about four years, said Mat Colgrove in a HPCwire pre-briefing. Colgrove leads the SPEC High Performance Group (HPG) and is also a dev/tech engineer for Nvidia.

“Our group’s mission is to look at high performance computing and we’ve put out various benchmarks over the years. We mostly focus on programming models. Our still active benchmarks are SPEC MPI 2007 and SPEC OpenMP 2012,” said Colgrove, who participated in developing the SPEC ACCEL benchmark which tests performance of the accelerator, host CPU, memory transfer between host and accelerator, support libraries and drivers, and compilers.

The new SPEChpc suite targets performance when the workload is offloaded to accelerators.

“We’ve combined all those [earlier] elements to be able to take a single benchmark and do so in a hybrid [fashion] with multiple models. That gives you a different perspective. Now you can start looking at different heterogeneous and homogeneous architectures using the same code base. The parallel [programming] model may change, but algorithmically they don’t. The idea was to be able to have portable models that can be utilized by many different vendors and to give a fair comparison across different architectures,” said Colgrove.

The value of any benchmark is in understanding its details. SPEChpc 2021’s components are as shown in the two figures below. (Click to enlarge)

Colgrove emphasized SPEChpc is a ‘strong scaled’ benchmark, “So we’ve got a fixed size workload. The problem in scaling is we want to range from a single node or two up to hundreds or even 1000s of nodes. You can’t do that with one workload. You’re going to have too big a memory constraint. What we decided to do is separate them into four workloads.”

As seen in the figures above, SPEChpc has four suites each comprised of between 9 (Tiny/Small) and 6 (Medium/Large) benchmarks. The three benchmarks not included in the Medium and Large Suites contain constructs, such as MPI_AllReduce which were not condusive for large scale benchmarking. Having fewer benchmarks also helps lowering the cost of running the suites on larger systems, according to SPEC.

“While the benchmark source code is the same between the suites, the workload size and memory requirements for each suite is different. Each suite is intended to target clusters with various node and core counts. The user will need to determine the appropriate suite for their system. While SPEChpc makes no requirement for the minimum or maximum number of ranks that can be used with each suite, since SPEChpc is strong scaled with fixed size workloads, scaling will diminish as more ranks are used. In some cases, a benchmark may fail if too many ranks are used. The description for each suite below indicates the rank counts SPEC/HPG has tested when using a pure MPI run. Scaling and rank count may differ when using an additional node level parallel model (OpenACC or OpenMP),” according to SPEC.

It will likely take time for the new SPEChpc 2021 benchmark to be widely used. SPEC benchmarks are mainly tools for vendors  to showcase their systems performances in a standardized way, but they can also be run by users to assess their internal systems. Here’s an excerpt from today’s announcement:

“With the SPEChpc 2021 Benchmark Suites, developers and researchers can evaluate different programming models to assess which model would be best for their application or system configuration. Hardware and software vendors can use it to stress test their solutions. And compiler vendors can use it to improve general code performance and their support for directive-based programming models. The new suites can also be used by data center operators and other end users to make procurement decisions.

“Building on our experience in developing the SPEC MPI 2007 benchmark, the SPEC OMP 2012 benchmark, and the SPEC ACCEL benchmark suites, SPEC designed a new set of benchmark suites that keeps pace with the rapidly evolving HPC market,” said Ron Lieberman, SPEC High Performance Group (HPG) Chair. “The high portability of the SPEChpc 2021 Benchmark Suites, along with a strict result review process and rich SPEC result repository, enables us to deliver vendor-neutral performance comparisons for evaluating and studying modern HPC platforms.”

Broadly, SPEC licenses its test suites to companies and organizations for use. Companies who run “compliant” (no customizing) tests are then free to publish the results. SPEC encourages organizations running benchmarks to post them on lists maintained on its website, but that’s not required.

There were 76 SPEChpc benchmarks listed as of earlier today. They are spread across the various test suites (tiny, small, medium, large). The hope is more will soon be added by vendors and users showcasing their systems.

Colgrove advises care when reviewing the scores. “We distill down to a single metric number, but what drives that number may not be immediately evident. I [may] have a world record number listed but what compose that [test]. How many nodes were used, because the top tiny net result is down here, for example, is TACC (The Texas Advanced Computing Center, three entries) and they got up to 78. That’s an impressive number but they also used 32 nodes, 64 ranks and 20 openMP threads. That’s a big system. I encourage people to look at the details and understand well, what do I want to compare? Do I want to look at a smaller system? If I was to be a purchasing somebody looking at it, and I wanted to understand, do I need to scale up or scale out,” he said.

The actual SPEChpc score is a ratio of the performance of system-being-tested against a reference system which is the TU-Dresden Taurus system. The SPEChpc score is calculated as follows (from the SPEC website):

  1. For the given suite (Tiny, Small, Medium, Large), the elapsed time in seconds for each of its benchmark runs is reported.
  2. The ratio of the reference system (TU-Dresden’s Taurus System) time divided by the corresponding measured time is reported.
  3. Separately for base and peak, the medianor lower median of these ratios is reported per benchmark.
  4. The “base” metric is the geometric mean of medians of the base ratios, and the “peak” metric is the geometric mean of medians of the peak ratios.

Benchmarks for a range of systems are currently shown with Lenovo submitting the majority, but there are also benchmarks for TACC (Frontera) and Oak Ridge (Summit). It’s best to look at the results directly, bearing in mind these are the first set of SPEChpc scores being listed.

“We really do hope that it has an impact. This is kind of our first our major attempt at a large-scale hybrid benchmark. We’d like in the future to be able to continue developing in this direction, and get feedback and have more people join us,” said Colgrove.

Link to SPEChpc 2021 results, https://www.spec.org/hpc2021/results/hpc2021.html

Link to SPEChpc 2021 overview, https://www.spec.org/hpc2021/Docs/overview.html#Q20

Link to SPEChpc 2021 rules, https://www.spec.org/hpc2021/Docs/runrules.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the training and inference performance of systems that are availa Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire