Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

By John Russell

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have dominated the conversation. Microsoft’s proposed topological qubit, which relies on the existence of a still-unproven particle (Majorana), may be the most intriguing. Recently, neutral atom approaches have quickened pulses in the quantum community. Advocates argue the technology is inherently more scalable, offers longer coherence times (key for error correction), and they point to proof-of-concept 100-qubit systems that have already been built.

Atom Computing, founded in 2018, is one of the neutral atom quantum computing pioneers. Last week, it announced a successful Series B funding round ($60M). It currently has a 100-qubit system (Phoenix) and says it will use the latest cash infusion to build its launch system (Valkyrie) which will be much larger (qubit count) and likely be formally announced in 2022 and brought to market in 2023. It’s also touting 40-second coherence (nuclear spin qubit), which the company says is a world record.

Rob Hays, CEO, Atom Computing

“Our first product will launch as a cloud service initially, probably with a partner. And we know which one or two partners want to go with, and just haven’t signed any contracts yet. We’re still kind of negotiating the T’s and C’s,” said Rob Hays, Atom Computing’s relatively new (July ’21) CEO and president. Most recently, Hays was the chief strategy officer at Lenovo. Before that, he spent 20-plus years in Intel’s datacenter group, working on Xeon, GPUs and OmniPath products.

Company founder Ben Bloom shifted to CTO with Hays’ arrival. Bloom’s Ph.D. work was cold atom quantum research, done with Jun Ye at the University Colorado. Notably, Ye recently won the 2022 Breakthrough Prize in Fundamental Physics[i] for “outstanding contributions to the invention and development of the optical lattice clock, which enables precision tests of the fundamental laws of nature.” Ye is on Atom’s science advisory. Company headcount is now roughly 40, and the next leg in its journey is to bring a commercial neutral atom to market.

If this formula sounds familiar, that’s because it is. There’s been a proliferation of quantum computing startups founded by prominent quantum researchers who, after producing POC systems, bring on veteran electronics industry executives to grow the company. (Link to a growing list of quantum computing/communication companies).

All of the newer emerging qubit technologies are drawing attention. Quantum market watcher Bob Sorensen of Hyperion Research told HPCwire, “I am somewhat of a fan of neutral atom qubit technology. It’s room temp, it has impressive coherence times, but to me, most importantly, it shows good promise for scaling to a large single qubit processor. Atom, along with and France’s Pasqal, are committed to the technology and are they getting the funding and additional support to keep on their development and deployment track. So we do need to keep an eye on their progress.”

So what is neutral atom-based quantum computing? Bloom and Hays recently briefed HPCwire on the company’s technology and plans.

Broadly, neutral atom qubit technology shares much with trapped ion technology — except, obviously, the atoms aren’t charged. Instead of confining ions with electromagnetic forces, neutral atom approaches use light to trap atoms and hold them in position. The qubits are the atoms whose nuclear magnetic spin states (levels) are manipulated to set the qubit state. Atom has written a recent paper (Assembly and coherent control of a register of nuclear spin qubits) describing its approach.

Ben Bloom, founder and CTO, Atom Computing

Bloom said, “We use atoms in the second column of the periodic table (alkaline earth metals). All those atoms share properties. We use strontium, but it doesn’t actually have to have been strontium, it could have been anyone in that column. Similar to trapped ion technology, we capture single atoms, and we optically trapped them. We create this optical trapping landscape with lasers. The nice thing about this is every atom you trap and you put in those light traps is exactly the same. The coherence times you can make are really, really long. It was kind of only theorized you could create them that long, but now we’ve shown that you can create them that long.”

Hays describes the apparatus. “We put some strontium crystals and a little oven next to the vacuum chamber. There’s a little tube that [takes in] gaseous form of strontium as they get heated up and off-gased. The atoms are sucked into the vacuum chamber. Then we shine lasers through the little windows in the vacuum chamber to [form] a grid of light and the little individual atoms that are floating around in there get stuck like a magnet to those spots of light. Once we get them stuck in space, we can actually move them if we want and we can write quantum information with them using a separate set of lasers at a different wavelength. We’ve got a camera that sits under the microscope objective in the top of the system that reads out of the results.

“All that gets fed back into a standard rack of servers that’s running our software stack, you know, the classic compute system off to the side. That’s running our operating system, our scheduler, all the API’s for the access, programming, data storage. That rack also has our proprietary radio frequency control system, which is how we control the lasers. And we’re basically just controlling how many spots light there are, and what the frequency phase and amplitude is of those spots of light. People interact with it remotely.”

It’s pretty cool. Think of a cloud of atoms trapped in the vacuum tube. Lasers are shined through the cloud along an X/Y axes (2D). Wherever the beams intersect, a sticky spot is created, and nearby atoms get stuck in those spots. You don’t get 100 percent filled sticky spots on the first pass, but Atom has demonstrated the ability to move individual atoms to fill in open spots. The result is an 10×10 array of stuck neutral atoms which serve as qubits at addressable locations. The trapped atoms are spaced four microns apart, which is far enough to prevent nuclear spin (qubit state) interaction.

Entanglement between qubits is accomplished by pumping the atoms up into a Rydberg state. This basically puffs up the atoms’ outer shell, enlarging the spatial footprint, and permits becoming entangled with neighbors. This is how Atom Computing gets two-qubit gates.

“To scale the system, we just simply create more spots a light, so instead of like a 10 by 10 array, if we went to a 100 by 100 array of lasers, then we get to 10,000 qubits and if we went to 1000 by 1000 we get to a million the qubits,” said Hays. “So, at four microns [apart] to get to a million qubits we’re still less than a millimeter on a side in a cube. And it’s all, again, wireless control. We don’t have to worry about cabling up the different chips together and then putting them in a dilution refrigerator and all that kind of stuff; we just put more spots of light in the same vacuum chamber and read them with the control systems in the cameras.”

Hays noted that achieving 3D arrays is possible, but much trickier. Currently, Atom computing is focused on 2D arrays. Achieving the current 100-qubit system was done with lots of hand-tuning and intended for experimental flexibility. Moving forward, said Hays, CAD tools with an emphasis on manufacturability, use efficiency, will guide development of the Valkyrie system. Bloom and Hays declined to say how many qubits it would have.

It will be interesting to watch the ongoing jostling among qubit technologies.

Sorensen said, “I still think it is too early to start picking winners and losers in the qubit modality race… and isn’t that part of the fun right now? In reality, there are lots of variables to consider besides qubit count and other qubit specific technical parameters. To me, increasingly, the goal to focus on is not on how to build a qubit, but how to build a processor. That is why when I look at a modality, I consider its overall architectural potential: does it scale, can you do reasonable I/O to the classical side, does it have ready solutions for networking, and does it require esoteric equipment to manufacture and/or operate in a traditional compute environment?”

The issue, says Sorensen, is that there are many factors to consider here, so specific modality may not be the only valid indicator of the winner: “IBM, Quantinuum, Rigetti, and IonQ are quite visible in the sector, representing a range of modalities, but they recognize that they need to bring more to the table in terms of vision, experience, market philosophy, and end use relevance. The smart players know that it is entirely possible, as we have seen in the past, that the best pure technology does not always win in the final market analysis.”

Hays emphasizes Atom Computing is a hardware company and will work with the growing ecosystem for other tools, “We’re focusing on the hardware and the necessary software levels – operating system, scheduler, API’s, etc. – that allow people to interact with the system. [For other needs] we’re working with the ecosystem. We’re going to support Qiskit, we support it internally and we’ll support it for whichever cloud service provider we choose to go to market with we’ll support their tool suite as well. Then there’s companies like QC Ware, Zapata, Classiq and others that are building their own platforms. We’re going to be very partner friendly.”

Atom Computing says it has early collaborators but it’s hard to judge progress without fuller public access to the system. It will be interesting to see just how big (qubit count) the forthcoming system ends up being, and also what benchmarks Atom Computing supplies to the community along the way.

Figure describing Atom Computing approach from its paper.

[i] The Breakthrough Prize in Fundamental Physics[1] is awarded by the Fundamental Physics Prize Foundation, a not-for-profit organization dedicated to awarding physicists involved in fundamental research. The foundation was founded in July 2012 by Russian physicist and internet entrepreneur Yuri Milner.[2]

As of September 2018, this prize is the most lucrative academic prize in the world[3] and is more than twice the amount given to the Nobel Prize awardees.[4][5] This prize is also dubbed by the media as the “XXI Century Nobel”.[6]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion Study Tracks Rise and Impact of Linux Supercomputers

May 17, 2022

That supercomputers produce impactful, lasting value is a basic tenet among the HPC community. To make the point more formally, Hyperion Research has issued a new report, The Economic and Societal Benefits of Linux Super Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. K Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Person to Watch. In this exclusive Q&A, Culhane covers her Read more…

Argonne Supercomputer Advances Energy Storage Research

May 13, 2022

The lack of large-scale energy storage bottlenecks many sources of renewable energy, such as sunlight-reliant solar power and unpredictable wind power. Researchers from Lawrence Livermore National Laboratory (LLNL) are w Read more…

AWS Solution Channel

shutterstock 1103121086

Encoding workflow dependencies in AWS Batch

Most users of HPC or Batch systems need to analyze data with multiple operations to get meaningful results. That’s really driven by the nature of scientific research or engineering processes – it’s rare that a single task generates the insight you need. Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. The resulting direct image of Sagittarius A*, revealed this Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Per Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Intel Extends IPU Roadmap Through 2026

May 10, 2022

Intel is extending its roadmap for infrastructure processors through 2026, the company said at its Vision conference being held in Grapevine, Texas. The company's IPUs (infrastructure processing units) are megachips that are designed to improve datacenter efficiency by offloading functions such as networking control, storage management and security that were traditionally... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Intel’s Habana Labs Unveils Gaudi2, Greco AI Processors

May 10, 2022

At the hybrid Intel Vision event today, Intel’s Habana Labs team launched two major new products: Gaudi2, the second generation of the Gaudi deep learning training processor; and Greco, the successor to the Goya deep learning inference processor. Intel says that the processors offer significant speedups relative to their predecessors and the... Read more…

IBM Unveils Expanded Quantum Roadmap; Talks Up ‘Quantum-Centric Supercomputer’

May 10, 2022

IBM today issued an extensive and detailed expansion of its Quantum Roadmap that calls for developing a new 1386-qubit processor – Kookaburra – built from modularly scaled chips, and delivering a 4,158-qubit POC system built using three connected Kookaburra processors by 2025. Kookaburra (Australian Kingfisher) is a new architecture... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire