Microsoft’s ‘Singularity’ to Enable Global Accelerator Network for AI Training

By Oliver Peckham

February 24, 2022

In science fiction and future studies, the word “singularity” is invoked in reference to a rapidly snowballing artificial intelligence that, repeatedly iterating on itself, eclipses all human knowledge and ability. It is this word that Microsoft—perhaps ambitiously—has invoked for its new AI project, a “globally distributed scheduling service for highly efficient and reliable execution of deep learning training and inference workloads.”

Microsoft’s Singularity is a response to the computational costs of training deep learning workloads—costs that have quickly spiraled as those workloads have grown in size, complexity and number. It is also an attempt to maximize the use of idle time, which has increasingly become a focus of discussions of how to minimize the costs and environmental footprints of high-performance computing systems and AI model training on such systems.

“Singularity is built with one key goal,” explains the preprint paper, which was written by a team of more than two dozen Microsoft researchers and published on arXiv, “driving down the cost of AI by maximizing the aggregate useful throughput on a given fixed pool of capacity of accelerators on a planet scale, while providing stringent [service-level agreements] for multiple pricing tiers.”

“At the heart of Singularity is a novel, workload-aware scheduler that can transparently preempt and elastically scale deep learning workloads to drive high utilization without impacting their correctness or performance across a global fleet of AI accelerators (e.g., GPUs, FPGAs).”

The researchers say that Singularity treats this entire fleet of accelerators as a “single local, shared cluster, and avoids any resource fragmentation or static reservation of capacity.” Singularity manages this by elastically scaling the jobs as resources scale up and down and, where necessary, checkpointing, preempting and migrating jobs across nodes, clusters or regions. This scheduler, they say, transcends cluster, region and workload boundaries, while ensuring resilience to failure by resuming jobs from where they were preempted.

Image courtesy of the researchers.

The paper spends most of its time focusing on the scheduler—”in this paper, we focus only on the above core mechanisms of the Singularity scheduler,” it reads, despite Singularity being a “significantly broad and complex distributed system[.]” For more details on how the scheduler works, read the paper—titled “Singularity: Planet-Scale, Preemptive and Elastic Scheduling of AI Workloads”—here.

But the researchers did give a glimpse into a hardware implementation of Singularity, which they say is capable of scaling to a global fleet of hundreds of thousands of accelerators. The paper describes an evaluation using Nvidia DGX-2 servers, each comprising two Intel Xeon Platinum 8168 CPUs, 1384GB of RAM and 16 V100 GPUs. Microsoft didn’t specify how many of these DGX-2 servers were used in the evaluation.

“Singularity achieves all of this with a remarkably simple user experience,” the paper adds. “The user focuses only on the ML task and does not need to think about checkpointing or elasticity; these mechanisms are infrastructure optimizations that are completely transparent to the user.”

To learn more about this research, read the paper here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Recipe for Scaling: ARQUIN Framework for Simulating a Distributed Quantum Computing System

October 14, 2024

One of the most difficult problems with quantum computing relates to increasing the size of the quantum computer. Researchers globally are seeking to solve this “challenge of scale.” To bring quantum scaling closer Read more…

Nvidia Is Increasingly the Secret Sauce in AI Deployments, But You Still Need Experience

October 14, 2024

I’ve been through a number of briefings from different vendors from IBM to HP, and there is one constant: they are all leaning heavily on Nvidia for their AI services strategy. That may be a best practice, but Nvidia d Read more…

Zapata Computing, Early Quantum-AI Software Specialist, Ceases Operations

October 14, 2024

Zapata Computing, which was founded in 2017 as a Harvard spinout specializing in quantum software and later pivoted to an AI focus, is ceasing operations, according to an SEC filing last week. Zapata had gone public one Read more…

AMD Announces Flurry of New Chips

October 10, 2024

AMD today announced several new chips including its newest Instinct GPU — the MI325X — as it chases Nvidia. Other new devices announced at the company event in San Francisco included the 5th Gen AMD EPYC processors, Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year grant recipients will write up what the Aurora supercompute Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you lean on friends and neighbors to chart a way forward. Those Read more…

Nvidia Is Increasingly the Secret Sauce in AI Deployments, But You Still Need Experience

October 14, 2024

I’ve been through a number of briefings from different vendors from IBM to HP, and there is one constant: they are all leaning heavily on Nvidia for their AI Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum d Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it w Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whateve Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire