Pfizer Discusses Use of Supercomputing and AI for Covid Drug Development

By Oliver Peckham

March 24, 2022

Over 16 months ago, Pfizer achieved a historic scientific moonshot — the unprecedentedly swift development and authorization of a novel vaccine for a novel virus using methods that hitherto had not been used in approved drugs at scale. Throughout the pandemic, nearly every public research supercomputer pivoted to some form of Covid research, but the pharmaceutical giants were characteristically cagey about their use of advanced technologies for vaccine and therapeutic development. At a session held during Nvidia’s GTC22 this week, Joe Ucuzoglu, CEO of Deloitte, spoke to Lidia Fonseca, executive vice president and chief digital and technology officer for Pfizer, about the company’s use of HPC and AI in the development of its groundbreaking vaccines and therapeutics for Covid-19.

Ucuzoglu opened the session — a fireside chat titled “Pfizer’s AI-enabled transformation” — by lauding the “fastest development of a novel vaccine in history” and calling Pfizer a “poster child for the full promise of AI to society.” He then continued by asking Fonseca how Pfizer is driving technology innovation in its value chain.

“Pfizer is applying digital data and AI across the entire value chain,” Fonseca said, “making our work faster and easier and enhancing every aspect of our business. We’re driving this end-to-end innovation with three strategic priorities in mind: first, to improve patient health outcomes; second, to bring medicines to patients faster; and third, to fuel tomorrow’s breakthrough therapies.”

Joe Ucuzoglu (left) and Lidia Fonseca (right). Image courtesy of Nvidia.

On supercomputing

“In research and discovery, we leveraged supercomputing, AI and machine learning to accelerate the identification of the most promising target compounds,” Fonseca said — though, of course, she did not disclose any details of the hardware it operates beyond a cursory reference to help from its host, Nvidia.

“Nvidia has been a key partner in helping advance Pfizer’s supercomputing and AI capabilities,” she said. “Supercomputing helped us to fast-track the progression from discovery to development for Paxlovid, our oral treatment. Using sophisticated computational modeling and simulation techniques, we can now test molecular compounds in a virtual rather than physical lab environment. In the case of Paxlovid, this enabled us to test a fraction of the millions of known compounds that might have worked to treat Covid-19 so that we could quickly narrow down to just those compounds that had the highest chance of becoming medicines.”

(Paxlovid is one of the few therapeutics that has demonstrated consistent effectiveness in reducing the risk of death from a Covid infection. To learn more about how Paxlovid works to disable SARS-CoV-2, read further reporting from HPCwire on supercomputer simulations of the antiviral here.)

“Supercomputing and advanced analytics also helped us hone Comirnaty, our Covid vaccine,” Fonseca continued. “Many of the allergic reactions that clinical trial participants reported while testing our vaccine resulted from certain lipid nanoparticles in the vaccine itself. Using supercomputing, we ran molecular dynamics simulations to find the right combination of lipid nanoparticle properties that reduce allergic reactions, thereby creating as safe and effective a vaccine as possible.”


A visualization of Paxlovid’s inhibition mechanism, produced on the MareNostrum 4 supercomputer.

On AI and machine learning

Fonseca repeatedly touched on how advanced technologies had transformed Pfizer’s clinical trial processes, which can often take years under normal circumstances.

“To set up our clinical trial for Covid, we used real-time predictive models to forecast the virus’ prevalence at a county level, identifying where the next big wave of infection would hit,” Fonseca explained. “This helped our development team optimize their selection of clinical trial sites based on where we anticipated recruitment being strongest. That’s how, in just four months, we were able to launch our clinical trial with 46,000 participants at 150 sites in six countries.”

“For patients, we launched an enhanced adverse event portal with AI capabilities to manage patient reporting more efficiently during the clinical trials,” she continued. “We also leveraged AI and machine learning to identify discrepancies in how clinical trial participants reported their symptoms in response to the vaccine, which was critical to our study timelines and to maintaining data quality and integrity.”

“During the vaccine clinical trials, we aggregated and refreshed the trial data every four hours. This meant that we could get the latest data to our clinicians and scientists with greater speed and frequency than before Covid, when it could take a few weeks after each participant visit to aggregate the data.”

Once the trials were done and Comirnaty was approved, Pfizer’s eye turned to using ML and AI to optimize shipping and distribution. “To support the manufacturing and distribution of more than three billion doses of our vaccine in 2021, we deployed several important data and AI capabilities,” Fonseca said. “We implemented AI and machine learning to predict product throughput and yield; this supports more consistent production and allows our manufacturing to be more predictable — an important consideration, given the urgency of scaling up our vaccine production.”

“Additionally, we used both AI and machine learning to predict product temperatures and enable preventative maintenance for the more than 3,000 freezers that house our vaccine doses, and we also leverage IoT and sensors to monitor and track vaccine shipments and temperatures at close to 100 percent accuracy — pretty important, as you can imagine.”

On the future

Ucuzoglu also asked Fonseca to speak to the future of advanced technologies in healthcare and at Pfizer, and she agreed to gaze into her “crystal ball” for the next five to ten years.

“The growing application of quantum computing will drive speed in discovery and development that we cannot imagine today,” she said, “[and] the landscape of AI companies will continue to proliferate, with new AI players that specialize in various areas, including data generation, data aggregation, advanced analytics and AI value generators that create algorithms.”

There would, she said, be more applied algorithms; more use of predictive technologies in drug discovery and clinical trials; and more decentralization of these trials. “There will be a substantial number of AI-discovered molecules,” she added.

“We’re seeing the healthcare industry being rewired across the entire patient journey,” Fonseca had said earlier in the session. “The pandemic actually served as a catalyst. … I believe Covid-19 accelerated these trends by as much as five years.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Leading Solution Providers

Contributors

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire