Nvidia R&D Chief on How AI is Improving Chip Design

By John Russell

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve its own products – a neat reverse sales pitch if you will. Nvidia has, for example begun using AI to effectively improve and speed GPU design.

Bill Dally of Nvidia in his home ‘workshop’

“We’re a group of about 300 people that tries to look ahead of where we are with products at Nvidia,” described Dally in his talk this year. “We’re sort of the high beams trying to illuminate things in the far distance. We’re loosely organized into two halves. The supply half delivers technology that supplies GPUs. It makes GPUs themselves better, ranging from circuits, to VLSI design methodologies, architecture networks, programming systems, and storage systems that go into GPUs and GPUs systems.”

“The demand side of Nvidia research tries to drive demand for Nvidia products by developing software systems and techniques that need GPUs to run well. We have three different graphics research groups, because we’re constantly pushing the state of the art in computer graphics. We have five different AI groups, because using GPUs to run AI is currently a huge thing and getting bigger. We also have groups doing robotics and autonomous vehicles. And we have a number of geographically ordered oriented labs like our Toronto and Tel Aviv AI labs,” he said.

Occasionally, Nvidia launches a Moonshot effort pulling from several groups – one of these, for example, produced Nvidia’s real-time ray tracing technology.

As always, there was overlap with Dally’s prior-year talk – but there was also new information. The size of the group has certainly grown from around 175 in 2019. Not surprisingly, efforts supporting autonomous driving systems and robotics have intensified. Roughly a year ago, Nvidia recruited Marco Pavone from Stanford University to lead its new autonomous vehicle research group, said Dally. He didn’t say much about CPU design efforts, which are no doubt also intensifying.

Presented here are small portions of Dally’s comments (lightly edited) on Nvidia’s growing use of AI in designing chips along a with a few supporting slides.

Mapping Voltage Drop

“It’s natural as an expert in AI that we would want to take that AI and use it to design better chips. We do this in a couple of different ways. The first and most obvious way is we can take existing computer-aided design tools that we have [and incorporate AI]. For example, we have one that takes a map of where power is used in our GPUs, and predicts how far the voltage grid drops – what’s called IR drop for current times resistance drop. Running this on a conventional CAD tool takes three hours,” noted Dally.

“Because it’s an iterative process, that becomes very problematic for us. What we’d like to do instead is train an AI model to take the same data; we do this over a bunch of designs, and then we can basically feed in the power map. The [resulting] inference time is just three seconds. Of course, it’s 18 minutes if you include the time for feature extraction. And we can get very quick results. A similar thing in this case, rather than using a convolutional neural network, we use a graph neural network, and we do this to estimate how often different nodes in the circuit switch, and this actually drives the power input to the previous example. And again, we’re able to get very accurate power estimations much more quickly than with conventional tools and in a tiny fraction of the time,” said Dally.

2 Predicting Parasitics

“One that I particularly like – having spent a fair amount of time a number of years ago as a circuit designer – is predicting parasitics with graph neural networks. It used to be that circuit design was a very iterative process where you would draw a schematic, much like this picture on the left here with the two transistors. But you wouldn’t know how it would perform until after a layout designer took that schematic and did the layout, extracted the parasitics, and only then could you run the circuit simulations and find out you’re not meeting some specifications,” noted Dally.

“You’d go back and modify your schematic [and go through] the layout designer again, a very long and iterative and inhuman labor-intensive process. Now what we can do is train neural networks to predict what the parasitics are going to be without having to do layout. So, the circuit designer can iterate very quickly without having that manual step of the layout in the loop. And the plot here shows we get very accurate predictions of these parasitics compared to the ground truth.”

3 Place and Routing Challenges

“We can also predict routing congestion; this is critical in the layout of our chips. The normal process is we would have to take a net list, run through the place and route process, which can be quite time consuming often taking days. And only then we would get the actual congestion, finding out that our initial placement is not adequate. We need to refactor it and place the macros differently to avoid these red areas (slide below), which is where there’s too many wires trying to go through a given area, sort of a traffic jam for bits. What we can do instead now is without having to run the place and route, we can take these net lists and using a graph neural network basically predict where the congestion is going to be and get fairly accurate. It’s not perfect, but it shows the areas where there are concerns, we can then act on that and do these iterations very quickly without the need to do a full place and route,” he said.

4 Automating Standard Cell Migration

“Now those [approaches] are all sort of using AI to critique a design that’s been done by humans. What’s even more exciting is using AI to actually do the design. I’ll give you two examples of that. The first is a system we have called NVCell, which uses a combination of simulated annealing and reinforcement learning to basically design our standard cell library. So each time we get a new technology, say we’re moving from a seven nanometer technology to a five nanometer technology, we have a library of cells. A cell is something like an AND gate and OR gate, a full adder. We’ve got actually many thoundands of these cells that have to be redesigned in the new technology with a very complex set of design rules,” said Dally.

“We basically do this using reinforcement learning to place the transistors. But then more importantly, after they’re placed, there are usually a bunch of design rule errors, and it goes through almost like a video game. In fact, this is what reinforcement learning is good at. One of the great examples is using reinforcement learning for Atari video games. So this is like an Atari video game, but it’s a video game for fixing design rule errors in a standard cell. By going through and fixing these design rule errors with reinforcement learning, we’re able to basically complete the design of our standard cells. What you see (slide) is that the 92 percent of the cell library was able to be done by this tool with no design rule or electrical rule errors. And 12 percent of them are smaller than the human design cells, and in general, over the cell complexity, [this tool] does as well or better than the human design cells,” he said.

“This does two things for us. One is it’s a huge labor savings. It’s a group on the order of 10 people will take the better part of a year to port a new technology library. Now we can do it with a couple of GPUs running for a few days. Then the humans can work on those 8 percent of the cells that didn’t get done automatically. And in many cases, we wind up with a better design as well. So it’s labor savings and better than human design.”

There was a good deal more to Dally’s talk, all of it a kind of high-speed dash through a variety of Nvidia’s R&D efforts. If you’re interested, here is HPCwire’s coverage of two previous Dally R&D talks – 2019, 2021 – for a rear-view mirror into work that may begin appearing in products. As a rule, Nvidia’s R&D is very product-focused rather than basic science. You’ll note his description of the R&D mission and organization hasn’t changed much but the topics are different.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion Study Tracks Rise and Impact of Linux Supercomputers

May 17, 2022

That supercomputers produce impactful, lasting value is a basic tenet among the HPC community. To make the point more formally, Hyperion Research has issued a new report, The Economic and Societal Benefits of Linux Super Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. K Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Person to Watch. In this exclusive Q&A, Culhane covers her Read more…

Argonne Supercomputer Advances Energy Storage Research

May 13, 2022

The lack of large-scale energy storage bottlenecks many sources of renewable energy, such as sunlight-reliant solar power and unpredictable wind power. Researchers from Lawrence Livermore National Laboratory (LLNL) are w Read more…

AWS Solution Channel

Shutterstock ID 646668913 whiteMocca

Benchmarking NVIDIA Clara Parabricks Somatic Variant Calling Pipeline on AWS

This post was contributed by Pankaj Vats, PhD, and Timothy Harkins, PhD,  from NVIDIA Parabricks.

Introduction

Advances in Next Generation Sequencing (NGS) technologies over the last decade have led to many novel discoveries in cancer genomics1,2,3. Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. The resulting direct image of Sagittarius A*, revealed this Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Per Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Intel Extends IPU Roadmap Through 2026

May 10, 2022

Intel is extending its roadmap for infrastructure processors through 2026, the company said at its Vision conference being held in Grapevine, Texas. The company's IPUs (infrastructure processing units) are megachips that are designed to improve datacenter efficiency by offloading functions such as networking control, storage management and security that were traditionally... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Intel’s Habana Labs Unveils Gaudi2, Greco AI Processors

May 10, 2022

At the hybrid Intel Vision event today, Intel’s Habana Labs team launched two major new products: Gaudi2, the second generation of the Gaudi deep learning training processor; and Greco, the successor to the Goya deep learning inference processor. Intel says that the processors offer significant speedups relative to their predecessors and the... Read more…

IBM Unveils Expanded Quantum Roadmap; Talks Up ‘Quantum-Centric Supercomputer’

May 10, 2022

IBM today issued an extensive and detailed expansion of its Quantum Roadmap that calls for developing a new 1386-qubit processor – Kookaburra – built from modularly scaled chips, and delivering a 4,158-qubit POC system built using three connected Kookaburra processors by 2025. Kookaburra (Australian Kingfisher) is a new architecture... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire