Nvidia R&D Chief on How AI is Improving Chip Design

By John Russell

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve its own products – a neat reverse sales pitch if you will. Nvidia has, for example begun using AI to effectively improve and speed GPU design.

Bill Dally of Nvidia in his home ‘workshop’

“We’re a group of about 300 people that tries to look ahead of where we are with products at Nvidia,” described Dally in his talk this year. “We’re sort of the high beams trying to illuminate things in the far distance. We’re loosely organized into two halves. The supply half delivers technology that supplies GPUs. It makes GPUs themselves better, ranging from circuits, to VLSI design methodologies, architecture networks, programming systems, and storage systems that go into GPUs and GPUs systems.”

“The demand side of Nvidia research tries to drive demand for Nvidia products by developing software systems and techniques that need GPUs to run well. We have three different graphics research groups, because we’re constantly pushing the state of the art in computer graphics. We have five different AI groups, because using GPUs to run AI is currently a huge thing and getting bigger. We also have groups doing robotics and autonomous vehicles. And we have a number of geographically ordered oriented labs like our Toronto and Tel Aviv AI labs,” he said.

Occasionally, Nvidia launches a Moonshot effort pulling from several groups – one of these, for example, produced Nvidia’s real-time ray tracing technology.

As always, there was overlap with Dally’s prior-year talk – but there was also new information. The size of the group has certainly grown from around 175 in 2019. Not surprisingly, efforts supporting autonomous driving systems and robotics have intensified. Roughly a year ago, Nvidia recruited Marco Pavone from Stanford University to lead its new autonomous vehicle research group, said Dally. He didn’t say much about CPU design efforts, which are no doubt also intensifying.

Presented here are small portions of Dally’s comments (lightly edited) on Nvidia’s growing use of AI in designing chips along a with a few supporting slides.

Mapping Voltage Drop

“It’s natural as an expert in AI that we would want to take that AI and use it to design better chips. We do this in a couple of different ways. The first and most obvious way is we can take existing computer-aided design tools that we have [and incorporate AI]. For example, we have one that takes a map of where power is used in our GPUs, and predicts how far the voltage grid drops – what’s called IR drop for current times resistance drop. Running this on a conventional CAD tool takes three hours,” noted Dally.

“Because it’s an iterative process, that becomes very problematic for us. What we’d like to do instead is train an AI model to take the same data; we do this over a bunch of designs, and then we can basically feed in the power map. The [resulting] inference time is just three seconds. Of course, it’s 18 minutes if you include the time for feature extraction. And we can get very quick results. A similar thing in this case, rather than using a convolutional neural network, we use a graph neural network, and we do this to estimate how often different nodes in the circuit switch, and this actually drives the power input to the previous example. And again, we’re able to get very accurate power estimations much more quickly than with conventional tools and in a tiny fraction of the time,” said Dally.

2 Predicting Parasitics

“One that I particularly like – having spent a fair amount of time a number of years ago as a circuit designer – is predicting parasitics with graph neural networks. It used to be that circuit design was a very iterative process where you would draw a schematic, much like this picture on the left here with the two transistors. But you wouldn’t know how it would perform until after a layout designer took that schematic and did the layout, extracted the parasitics, and only then could you run the circuit simulations and find out you’re not meeting some specifications,” noted Dally.

“You’d go back and modify your schematic [and go through] the layout designer again, a very long and iterative and inhuman labor-intensive process. Now what we can do is train neural networks to predict what the parasitics are going to be without having to do layout. So, the circuit designer can iterate very quickly without having that manual step of the layout in the loop. And the plot here shows we get very accurate predictions of these parasitics compared to the ground truth.”

3 Place and Routing Challenges

“We can also predict routing congestion; this is critical in the layout of our chips. The normal process is we would have to take a net list, run through the place and route process, which can be quite time consuming often taking days. And only then we would get the actual congestion, finding out that our initial placement is not adequate. We need to refactor it and place the macros differently to avoid these red areas (slide below), which is where there’s too many wires trying to go through a given area, sort of a traffic jam for bits. What we can do instead now is without having to run the place and route, we can take these net lists and using a graph neural network basically predict where the congestion is going to be and get fairly accurate. It’s not perfect, but it shows the areas where there are concerns, we can then act on that and do these iterations very quickly without the need to do a full place and route,” he said.

4 Automating Standard Cell Migration

“Now those [approaches] are all sort of using AI to critique a design that’s been done by humans. What’s even more exciting is using AI to actually do the design. I’ll give you two examples of that. The first is a system we have called NVCell, which uses a combination of simulated annealing and reinforcement learning to basically design our standard cell library. So each time we get a new technology, say we’re moving from a seven nanometer technology to a five nanometer technology, we have a library of cells. A cell is something like an AND gate and OR gate, a full adder. We’ve got actually many thoundands of these cells that have to be redesigned in the new technology with a very complex set of design rules,” said Dally.

“We basically do this using reinforcement learning to place the transistors. But then more importantly, after they’re placed, there are usually a bunch of design rule errors, and it goes through almost like a video game. In fact, this is what reinforcement learning is good at. One of the great examples is using reinforcement learning for Atari video games. So this is like an Atari video game, but it’s a video game for fixing design rule errors in a standard cell. By going through and fixing these design rule errors with reinforcement learning, we’re able to basically complete the design of our standard cells. What you see (slide) is that the 92 percent of the cell library was able to be done by this tool with no design rule or electrical rule errors. And 12 percent of them are smaller than the human design cells, and in general, over the cell complexity, [this tool] does as well or better than the human design cells,” he said.

“This does two things for us. One is it’s a huge labor savings. It’s a group on the order of 10 people will take the better part of a year to port a new technology library. Now we can do it with a couple of GPUs running for a few days. Then the humans can work on those 8 percent of the cells that didn’t get done automatically. And in many cases, we wind up with a better design as well. So it’s labor savings and better than human design.”

There was a good deal more to Dally’s talk, all of it a kind of high-speed dash through a variety of Nvidia’s R&D efforts. If you’re interested, here is HPCwire’s coverage of two previous Dally R&D talks – 2019, 2021 – for a rear-view mirror into work that may begin appearing in products. As a rule, Nvidia’s R&D is very product-focused rather than basic science. You’ll note his description of the R&D mission and organization hasn’t changed much but the topics are different.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire