IBM Unveils Expanded Quantum Roadmap; Talks Up ‘Quantum-Centric Supercomputer’

By John Russell

May 10, 2022

IBM today issued an extensive and detailed expansion of its Quantum Roadmap that calls for developing a new 1386-qubit processor – Kookaburra – built from modularly scaled chips, and delivering a 4,158-qubit POC system built using three connected Kookaburra processors by 2025. Kookaburra (Australian Kingfisher) is a new architecture that IBM says will “leverage three pillars: robust and scalable quantum hardware; cutting-edge quantum software to orchestrate and enable accessible and powerful quantum programs; and a broad global ecosystem of quantum-ready organizations and communities.”

The revised roadmap still includes delivery of previously-announced single-chip 433-qubit Osprey processor this year and 1121-qubit Condor processor next year, but introduces newly-architected processors intended for use in multi-chip modules, starting with a 133-qubit (Heron) processor in 2023, a 408-qubit processor (Crossbill) and 462-qubit processor (Flamingo) in 2024, and leading to Kookaburra in 2025. Besides hardware improvements, IBM discussed key software advances and introduced its broad concept of a quantum-centric supercomputer leveraging both classical and quantum technology.

Jay Gambetta, IBM Fellow and vice president, quantum computing, delivered the expanded IBM vision in a blog posted this morning.

“We aren’t just thinking about quantum computers, though. We’re trying to induce a paradigm shift in computing overall. For many years, CPU-centric supercomputers were society’s processing workhorse, with IBM serving as a key developer of these systems. In the last few years, we’ve seen the emergence of AI-centric supercomputers, where CPUs and GPUs work together in giant systems to tackle AI-heavy workloads. Now, IBM is ushering in the age of the quantum-centric supercomputer, where quantum resources — QPUs — will be woven together with CPUs and GPUs into a compute fabric. We think that the quantum-centric supercomputer will serve as an essential technology for those solving the toughest problems,” wrote Gambetta.

No doubt the devil will be in the details. IBM has so far hit most quantum milestones it set for itself as shown in the chart above (click to enlarge). Gambetta’s blog is wide-ranging and covers most aspects of IBM’s evolving quantum strategy. With apologies for the length of this excerpt, here’s Gambetta’s summary of the hardware news. There’s a good deal more around software:

“With the 433-qubit “Osprey” processor and the 1,121-qubit “Condor” processors — slated for release in 2022 and 2023, respectively — we will test the limits of single-chip processors and controlling large-scale quantum systems integrated into the IBM Quantum System Two.  But we don’t plan to realize large-scale quantum computers on a giant chip. Instead, we’re developing ways to link processors together into a modular system capable of scaling without physics limitations.

“To tackle scale, we are going to introduce three distinct approaches. First, in 2023, we are introducing Heron: a 133-qubit processor withcontrol hardware that allows for real-time classical communication between separate processors, enabling the knitting techniques described above. The second approach is to extend the size of quantum processors by enabling multi-chip processors. Crossbill, a 408-qubit processor, will be made from 3 chips connected by chip-to-chip couplers that allow for a continuous realization of the the heavy-hex lattices across multiple chips. The goal of this architecture is to make users feel as if they’re just using just one, larger processor.

“Along with scaling through modular connection of multi-chip processors, in 2024, we also plan to introduce our third approach: quantum communication between processors to support quantum parallelization. We will introduce the 462-qubit Flamingo processor with a built-in quantum communication link, and then release a demonstration of this architecture by linking together at least three Flamingo processors into a 1,386-qubit system. We expect that this link will result in slower and lower-fidelity gates across processors. Our software needs to be aware of this architecture consideration in order for our users to best take advantage of this system.

“Our learning about scale will bring all of these advances together in order to realize their full potential. So, in 2025, we’ll introduce the Kookaburra processor. Kookaburra will be a 1,386-qubit multi-chip processor with a quantum communication link. As a demonstration, we will connect three Kookaburra chips into a 4,158-qubit system connected by quantum communication for our users.”

In keeping with its steady hardware advances, IBM says it will raise its Quantum Volume score (performance benchmark) from 256 to 1024 this year and also increase the highest CLOPS (circuit layer operations per second) from 2.9k to 10k, noting that faster processing should permit incorporation of more error mitigation measures. The QV benchmark, developed by IBM, has been used by others. For example, Quantinuum recently reported achieving a QV of 4096.

Bob Sorensen, chief analyst for quantum computing, Hyperion Research, said, “The most interesting part is the reference to quantum parallelization in the blog and quantum communication beyond 2026 in the roadmap. Single quantum processor qubits counts are a good indicator of technological advance at the processor level, but to truly get to high-qubit-count QC systems, QC architects will need to take a page out of the classical HPC designers handbook and begin to assemble QC systems that contain multiple quantum processors connected by a fast, efficient network.

“[Moreover], the interconnect/network between those quantum processors cannot be exclusively classical-based: it will need to support quantum processor to quantum processor communication that stays in the quantum realm. the ability to field such quantum networks becomes a major determinant of how fast QC systems can scale to reach the oft mentioned goal of 1 million qubits,” said Sorensen.

Hardware advances, of course, are insufficient to drive IBM’s vision forward. Gambetta’s blog spends equal time on software plans. Broadly, the idea is to develop tools that help shield developers and users from the underlying complexity of quantum computing hardware. It’s an idea that’s shared by virtually everyone in the quantum community, and IBM has framed this concept as Quantum Serverless computing.

“Quantum Serverless centers around enabling flexible quantum-classical resource combinations without requiring developers to be hardware and infrastructure experts, allocating just those compute resources a developer needs when they need it. In 2023, we plan to integrate Quantum Serverless into our core software stack in order to enable core functionality such as circuit knitting,” said Gambetta, who incidentally is an HPCwire 2022 Person to Watch.

IBM has long been an active participant in building out the needed quantum software ecosystem. Its Qiskit programming framework suite, now open source, has steadily gained wider use. Gambetta noted, “different users have different needs and experiences and we need to build tools for each persona: kernel developers, algorithm developers, and model developers.” He singled out three specific targets for software advancement: dynamic circuits; Qiskit primitives; and circuit knitting.

Dynamic circuits allow for feedback and feedforward of quantum measurements to change or steer the course of future operations. “They extend what the hardware can do by reducing circuit depth, by allowing for alternative models of constructing algorithms, and by enabling the fundamental operations at the heart of quantum error correction,” wrote Gambetta. “Debuting dynamic circuits required several advances: we needed new control hardware that could move data between components with lower latency and tight synchronization, which will only improve with the hardware advances, which we detail below. They also require a language to describe them, and as the community continues to mature the OpenQASM 3 language, we’ll be developing an OpenQASM 3-native compiler.”

Two Qiskit primitives were introduced earlier this year as part of Qiskit Runtime update. One of the primitives, Sampler, lets users reconstruct probability distributions of measurements from repeated runs of a circuit. It’s a useful tool for applications such as Grover’s algorithm. The other primitive is Estimator, which lets users “calculate the expectation values of operators, which can be useful for representing the electronic structure of a molecule, calculating the kernel of a machine learning problem, and much more,” says IBM.

Gambetta noted, “In 2023, we plan to update Qiskit Runtime with threaded primitives, allowing our systems to execute primitives on parallelized quantum processors, including automatically distributing work that is trivially parallelizable. We also plan to enhance primitive performance with low-level compilation and post-processing methods, like introducing error suppression and mitigation tools. These advanced primitives will allow algorithm developers to use Qiskit Runtime services as an API for incorporating quantum circuits and classical routines to build quantum workflows.”

Beyond primitives, IBM plans to continue beefing up Qiskit Runtime. “We want Qiskit Runtime to be an operating system focused on providing the tools that developers need in order to best utilize quantum resources. In 2024 and 2025, we’ll be introducing error mitigation and suppression techniques into Qiskit Runtime so that users can begin to calculate observables with less noise—and eventually, noise-free observables. These techniques will help lay the groundwork for quantum error correction in the future,” he wrote.

IBM and others have been discussing the need for circuit knitting for some time. The idea is to break larger circuits into smaller pieces to run on a quantum computer. “Earlier this year, we demonstrated a circuit knitting method called entanglement forging to double the size of the quantum systems we could address with the same number of qubits,” wrote Gambetta. “However, circuit knitting requires that we can run lots of circuits split across quantum resources and orchestrated with classical resources. We think that parallelized quantum systems with classical communication will be able to bring about quantum advantage even sooner.”

IBM has ambitious software goals. Gambetta says it will begin prototyping quantum software applications for users hoping to use Qiskit Runtime and Quantum Serverless to address specific use cases. “We’ll begin to define these services with our first test case — machine learning — working with partners to accelerate the path toward useful quantum software applications,” he wrote. “By 2025, we think model developers will be able to explore quantum applications in machine learning, optimization, finance, natural sciences, and beyond.”

There’s a lot to unpack in today’s announcement, which was timed to coincide with the start of IBM’s Think 2022 conference. This year, Think has been expanded into series of events – Think on Tour – commencing in Boston this week, followed by others across the globe including London, Berlin, Toronto, Singapore, Paris, Madrid, Sydney, Dallas, Mumbai, Beijing, and Tokyo. Some of today’s quantum roadmap is scheduled for discussion in Dario Gil’s (senior vice president, director of research, IBM) session on Future Technologies tomorrow at Think Boston.

Link to Gambetta blog, https://www.research.ibm.com/blog/ibm-quantum-roadmap-2025

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion Study Tracks Rise and Impact of Linux Supercomputers

May 17, 2022

That supercomputers produce impactful, lasting value is a basic tenet among the HPC community. To make the point more formally, Hyperion Research has issued a new report, The Economic and Societal Benefits of Linux Super Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. K Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Person to Watch. In this exclusive Q&A, Culhane covers her Read more…

Argonne Supercomputer Advances Energy Storage Research

May 13, 2022

The lack of large-scale energy storage bottlenecks many sources of renewable energy, such as sunlight-reliant solar power and unpredictable wind power. Researchers from Lawrence Livermore National Laboratory (LLNL) are w Read more…

AWS Solution Channel

shutterstock 1103121086

Encoding workflow dependencies in AWS Batch

Most users of HPC or Batch systems need to analyze data with multiple operations to get meaningful results. That’s really driven by the nature of scientific research or engineering processes – it’s rare that a single task generates the insight you need. Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. The resulting direct image of Sagittarius A*, revealed this Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Per Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Intel Extends IPU Roadmap Through 2026

May 10, 2022

Intel is extending its roadmap for infrastructure processors through 2026, the company said at its Vision conference being held in Grapevine, Texas. The company's IPUs (infrastructure processing units) are megachips that are designed to improve datacenter efficiency by offloading functions such as networking control, storage management and security that were traditionally... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Intel’s Habana Labs Unveils Gaudi2, Greco AI Processors

May 10, 2022

At the hybrid Intel Vision event today, Intel’s Habana Labs team launched two major new products: Gaudi2, the second generation of the Gaudi deep learning training processor; and Greco, the successor to the Goya deep learning inference processor. Intel says that the processors offer significant speedups relative to their predecessors and the... Read more…

IBM Unveils Expanded Quantum Roadmap; Talks Up ‘Quantum-Centric Supercomputer’

May 10, 2022

IBM today issued an extensive and detailed expansion of its Quantum Roadmap that calls for developing a new 1386-qubit processor – Kookaburra – built from modularly scaled chips, and delivering a 4,158-qubit POC system built using three connected Kookaburra processors by 2025. Kookaburra (Australian Kingfisher) is a new architecture... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire