IDC Perspective on Integration of Quantum Computing and HPC

By Heather West, Ashish Nadkami, IDC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy intermediate scale quantum (NISQ) computers.

Currently, enterprises are reliant on the advantages that can be achieved using only classical accelerator technology such as GPUs and FPGAs. However, HPC systems are limited in their ability to process and analyze large amounts of data needed to execute multiple workflows, even with the added compute power of classical accelerators. Using quantum computing technologies, not only will enterprises be able to accelerate current HPC processes, but they will also be empowered to solve intractable industry problems beyond the scope of the most advanced classical compute systems.

Today, quantum computing systems are still in early development and far from commercial maturity. Quantum computing hardware vendors are challenged in their ability to stabilize and scale the large number of qubits needed to solve complex problems and allow for error correction due to decoherence. As a result, NISQ machines cannot provide a means for enterprises to realize a quantum advantage, defined by IDC as being able to solve a problem that has actual value to a business, humanity, or otherwise.

Despite these challenges, enterprises are investing in quantum initiatives to identify uses cases and develop algorithms so that they are quantum ready when a fault-tolerant universal machine is realized. As a result, government entities, such as China, Germany and the US; IT industry leaders such as IBM, Google, Microsoft, and Amazon Web Services (AWS); and private investors are escalating funding for quantum computing to push this technology to new levels of maturity.

IDC expects investments in the quantum computing market will reach nearly $16.4 billion by the end of 2027. IDC believes that these investments will lead to waves of technology innovation and breakthroughs that will allow organizations to apply quantum computing to a diverse and expanding group of use cases that involve the analysis of huge amounts of diverse datasets, exponentially large numbers of variables, and an inexhaustible number of possible outcomes.

The ability to address large-scale use cases using quantum computing is possible due to the qubit’s unique superpositioning and entanglement properties. Quantum and classical computers store and compute data based on a series of 0s and 1s. In classical computing, this is done using a bit. Bits are only capable of holding the values of 0 or 1. Bits cannot hold the value of 0 and 1 simultaneously. Qubits do have this capability.  This property is referred to as superposition. Through qubit entanglement, a pair of qubits is connected or linked. Change in the state of one qubit results in a simultaneous, predictable change in the other qubit. Combined, the quantum properties of superpositioning and entanglement provide qubits the ability to process more data faster, cheaper, and better (more accurately or precisely) than a classical computer. As a result, enterprises can use quantum computing systems to explore new and unique use cases which can accelerate current business processes and workloads.

The list of use cases is growing at a rapid pace. Included in this list are performance intensive compute (PIC) specific use cases that address newly defined problems, refine solutions generated and iterated in the PIC environment, simulate quantum algorithms, and more. Energized by this innovative technology, many enterprises don’t want to delay the commencement of their quantum journey. Approximately 8 out of 10 enterprises that are currently investing, or planning to invest, in quantum computing expect to integrate quantum computing technologies as a hybrid model to enhance their current performance intensive computing (PIC) capabilities. Because of this trend, IDC anticipates that several performance-intensive computing workloads will initially be turbocharged by quantum computing-based accelerators. Yet, in the long-term many of these workloads will eventually cross the computing paradigm and become quantum only.

Quantum and classical hardware vendors are working to develop quantum and quantum-inspired computing systems dedicated to solving HPC problems. For example, using a co-design approach, quantum start-up IQM is mapping quantum applications and algorithms directly to the quantum processor to develop an application-specific superconducting computer. The result is a quantum system optimized to run particular applications such as HPC workloads. In collaboration with Atos, quantum hardware start-up, Pascal is working to incorporate its neutral-atom quantum processors into HPC environments. NVIDIA’s cuQuantum Appliance and cuQuantum software development kit provide enterprises the quantum simulation hardware and developer tools needed to integrate and run quantum simulations in HPC environments.

At a more global level, the European High Performance Computing Joint Undertaking (EuroHPC JU) announced its funding for the High-Performance Computer and Quantum Simulator (HPCQS) hybrid project. According the EuroHPC JU, the goal of the project is to prepare Europe for the post-exascale era by integrating two 100+ qubit quantum simulators into two supercomputers and developing the quantum computing platform, both of which will be accessible via the cloud.

Due to the demand for hybrid quantum-HPC systems, other classical and quantum hardware and software vendors have announced that they too are working to develop a hybrid quantum-HPC solutions. For example, compute infrastructure vendor, HPE, is extending its R&D focus into quantum computing by specializing in the co-development of quantum accelerators. Because quantum software vendor, Zapata, foresees quantum computing, HPC, and machine learning converging, the company is creating the Orquestra Universal Scheduler to manage task executions on HPC clusters and current HPC resources.

Yet, recent results from an IDC survey indicate that approximately 15% of enterprises are still deterred from quantum computing adoption. For quantum computing to take off, a quantum computing workforce made up of quantum scientists, physicists, engineers, developers, and operators needs to evolve. However, this should not deter enterprises from beginning their quantum computing journeys. Instead, hesitant adopters should take advantage of the development and consulting services offered by quantum hardware and software vendors, as well as IT consultants that specialize in quantum computing technologies. Because the choice is clear, become quantum ready or be left behind. IDC projects that worldwide customer spend for quantum computing will grow to $8.6 billion in 2027.

Authors

Heather West, Ph.D., Senior Research Analyst, Infrastructure Systems, Platforms and Technologies Group, IDC

Ashish Nadkami, Group Vice President, Infrastructure Systems, Platforms and Technologies Group, IDC

Sample of IDC Reports

Worldwide Quantum Computing Forecast, 2021-2025: Imminent Disruption for the Next Decade

IDC’s Worldwide Quantum Computing Taxonomy, 2022

Emerging Trends in End-User Adoption of Quantum Computing-as-a-Service Solutions

2021 Worldwide Quantum Technologies Use Case Report

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Quinn in a presentation delivered to the 79th HPC User Forum Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watch. McVeigh shares Intel's plans for the year ahead, his pers Read more…

AWS Solution Channel

Shutterstock 152995403

Bayesian ML Models at Scale with AWS Batch

This post was contributed by Ampersand’s Jeffrey Enos, Senior Machine Learning Engineer, Daniel Gerlanc, Senior Director for Data Science, and Brandon Willard, Data Science Lead. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 261863138

Using Cloud-Based, GPU-Accelerated AI for Financial Risk Management

There are strict rules governing financial institutions with a number of global regulatory groups publishing financial compliance requirements. Financial institutions face many challenges and legal responsibilities for risk management, compliance violations, and failure to catch financial fraud. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Intel CPUs and GPUs across multiple partitions. The newly reimag Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watc Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

D-Wave Debuts Advantage2 Prototype; Seeks User Exploration and Feedback

June 16, 2022

Starting today, D-Wave Systems is providing access to a 500-plus-qubit prototype of its forthcoming 7000-qubit Advantage2 quantum annealing computer, which is d Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Covid Policies at HPC Conferences Should Reflect HPC Research

June 6, 2022

Supercomputing has been indispensable throughout the Covid-19 pandemic, from modeling the virus and its spread to designing vaccines and therapeutics. But, desp Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire