At PEARC22: Moving Beyond Exascale, Harnessing Artistic Expertise

By Ken Chiacchia, Pittsburgh Supercomputing Center

July 15, 2022

The direction that exascale supercomputing will need to follow and the continuing value of visual and other non-computational experts in computer visualizations were the focus of the final two plenary sessions at the PEARC22 conference in Boston on July 13.

Jack Dongarra, director of research staff and professor at the Oak Ridge National Laboratory and the University of Tennessee, Knoxville, surveyed the state of the art as reflected in the new generation of exascale computers in his talk, “High-Performance Computing: Where We Are Today and a Look into the Future.” He argued that moving forward will require both new hardware and hardware tailored to the job of minimizing the communications bottlenecks that force these machines to operate at well below their theoretical capacity.

Donna Cox, plenary speaker and professor emeritus of art and design at the National Center for Supercomputing Applications (NCSA) at the University of Illinois Urbana-Champaign, reviewed the history of visual artists’ involvement with visualization, an approach she pioneered, and the value of nontechnical expertise in technology projects in her talk, “Connecting People for Advancing Our Future: Renaissance Teams and the Art of Interdisciplinary Collaboration for Scientific Visualization.”

The Association for Computing Machinery (ACM) Practice and Experience in Advanced Research Computing (PEARC) Conference Series is a community-driven effort built on the successes of the past, with the aim to grow and increase inclusivity by involving additional local, regional, national and international cyberinfrastructure and research computing partners spanning academia, government, and industry. ACM PEARC22, now taking place, is exploring current practice and experience in advanced research computing, including workforce development, training, diversity, applications and software, and systems and software.

Navigating the Shoals of Hardware Limitations

“Simulation has become the third pillar of science,” Dongarra said. “It augments theory and experimentation. Computational science really is driving the way science is performed today.”

But today’s hardware, which is generally based on parallelizing commodity processors of similar design — of the current Linpack Top500 machines, 78 percent employ Intel processors; a further 19 percent use AMD processors — seldom run at anywhere near peak performance, despite GPU acceleration.

“x86 architecture is really driving high-performance computing in a big way,” he said. “I find that really interesting … We have this monoculture here of high-performance computing.”

In addition to other select Top 10 and Top500 machines, Dongarra used as an example of the Department of Energy’s Oak Ridge National Laboratory Frontier system, currently the top Linpack system. While its theoretical peak performance is 1.7 exaflops, Frontier runs Linpack at 1.1 exaflops — only 65 percent of the theoretical value. Much of that loss is due to communication bottlenecks.

He offered numbers for High-Performance Conjugate Gradient (HPCG) Benchmark, a more representative measure of balanced performance than Linpack – which Dongarra helped create. Frontier hasn’t been tested with HPCG yet (or at least the number hasn’t been made public yet); but looking at other Top500 machines, he pointed to an even worse gap between theoretical and actual performance, with the top HPCG-ranked system, Fugaku in Japan, delivering only 3 percent of its peak performance.

“Most of the machines on the Top 10 list are getting very, very small return … that’s an issue,” he said. “And this issue is because of communication.”

Progress through heterogeneity

Dongarra noted that the dominant technology companies – Apple, Samsung, Google, Microsoft, Amazon, and Facebook – are getting around the problem by investing in bespoke architectures that solve specific problems. While academic computing can’t emulate their funding streams, he recommended an approach that focuses on a redesign of the communication interconnects at various points in the computer architecture that could avoid the bottlenecks.

Such “mixed precision” computing could use high-precision processing, then truncate the results for lower precision when moving them into memory or to another process in the computer. Mathematical techniques that use an iterative approach could converge on an accurate answer using a low-precision result as a starting point.

Using such an approach, as found in the HPL-AI benchmark, Frontier achieved an effective performance of nearly 6.9 exaflops – greatly improved compared with its 1.7-exaflops theoretical performance, let alone its 1.1-exaflops Linpack-ranking performance. This approach uses mixed precision to obtain a fully accurate solution much faster than using the standard 64-bit precision algorithm. Dongarra sees “plenty of opportunity” to improve on current systems’ performance, and further HPC development may hinge on such improvement.

In the future, he added, “High-performance computing will have extreme heterogeneity, with custom systems for each important application.” While today’s biggest systems are based CPUs with GPU acceleration, tomorrow’s may augment with machine-learning processors, application-specific integrated circuits, or possibly even neuromorphic or quantum processors.

Renaissance Teams: Harnessing Diverse Skillsets

Beginning in 1985, Cox began championing the involvement of visual artists in helping scientists and engineers design visualizations that are as vivid as they are informative. The approach became standard procedure at NCSA, leading to a series of visualizations that accelerated science and aided in making its value clear to lay – and government – audiences. Her approach, “renaissance teams,” combined domain experts in a way that may be familiar to researchers today, but did so in a more expansive way, even back then.

Cox established a “10 Commandments” of running renaissance teams that hinged on:

  • Setting a common goal or problem to be solved
  • Observing mutual respect between team members
  • Being willing to learn from teammates
  • Recognizing members’ intellectual territory
  • Optimizing team size
  • Periodically checking goals and progress
  • Ensuring team members are not over-committed either within or outside the team’s work
  • Naming a project leader or coordinator
  • Crediting every team member appropriately
  • Ensuring each member is rewarded within their fields

The benefits of this approach, she explained, can be concrete. She cited an example of a 2018 solar-weather funding bill whose prospects for passage by Congress were uncertain. A 2016 documentary on solar storms that her group helped create gave the politicians a better understanding of the importance of the work, helping to get the bill passed. Such “expository visualization,” she argued, stems from the sweet spot of overlap between expert discovery and nonexpert understanding and can move mountains for both educating the public and justifying funding.

“It’s not just the science,” she said. “It’s the communication efforts; it’s the social engineering.” In an era of denialism, effective visualization drawing on artistic expertise can be the key to communicating in a way that connects – and persuades.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora sys Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over t Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for Amazon.com

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire