Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

By John Russell

August 3, 2022

Update: The CHIPS and Science Act was signed into law on Aug. 9, 2022.

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the CHIPS and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget is increased and a new Directorate for Technology, Innovation, and Partnership (TIP) is added. NIST’s profile and funding gets big boosts. DOE’s Office of Science office also fared well.

The final bill blends core science provisions of the America COMPETES Act of 2022 (House) with the Senate’s 2021 US Innovation and Competition Act (USICA). Fully parsing the bill’s 1,000-plus pages of provisions will take time. While most of the recent attention has focused on the $54.2B provided for chipmaking, the bill actually calls for about $280 billion in spending. The caveat is the bulk of the spending has only been authorized and must subsequently be appropriated by congress.

It’s been a long path forward for the legislation, which got its start in 2020 as the Endless Frontier Act, an ambitious proposal by Senators Chuck Schumer (D-NY) and Todd Young (R-IN) to dramatically expand NSF (see HPCwire coverage, $100B Plan Submitted for Massive Remake and Expansion of NSF). Inevitably, the supply-chain shortages caused by the pandemic, emerging geopolitical tensions, and recent cyber-security concerns injected a wider compass of elements into the legislation as it moved through Congress.

Physics Today has excellent recap of the final bill and its re-shaping process. Here’s brief excerpt of non-chip funding highlights from that article:

“[The bill] recommends that over the next five years Congress should roughly double the annual budgets of NSF and NIST, to $18.9 billion and $2.3 billion, respectively, and increase funding for the DOE Office of Science by nearly 50%, to $10.8 billion. It also proposes that parts of DOE beyond the Office of Science receive $4 billion to upgrade infrastructure at national labs and $11.2 billion for work on the same key technology areas supported by the TIP directorate.

“Those figures mostly represent a blend of proposals offered in the House and Senate bills. One exception is that the bill entirely drops a USICA provision that recommended an immediate doubling of the budget of the Defense Advanced Research Projects Agency. It also omits budget targets for NASA but still provides policy direction for the agency.

“In contrast to the semiconductor funds in the bill, the agency figures are only authorizations, meaning Congress is not obligated to provide the money and will decide whether to meet the targets on a year-by-year basis. Congressional appropriations often fall well short of authorized levels, as occurred with those set by the America COMPETES Acts of 2007 and 2010, which also proposed ramping up the budgets of NSF, DOE, and NIST.”

Bloomberg ran an interesting, positive-but-cautionary editorial that reflects a chorus of opinion. The dust has clearly not yet settled for this bill. There are winners and losers and there will be lot to track moving forward. (see overall summary and NSF drill down below taken from different congressional documents)

The HPC community, perhaps not surprisingly, has been generally supportive of the bill. The devil will be in the details.

Rick Stevens, associate laboratory director, Argonne National Laboratory, said, “I think in general getting growth in the authorization is helpful, I would like to see the physical science budgets on a 10-year doubling trajectory and this helps with that.

Rick Stevens, ANL

“The specifics of course matter as DOE’s facility strategy and research priorities are being refined and updated frequently. As a general statement, we want to see progress on: building out the exascale facilities ecosystem at the labs, continuing support for software and applications for exascale, rebuilding the base research math and CS programs that were used to bootstrap exascale, starting new facilities investments for edge computing with the DOE experimental facilities and of course the investments needed to drive progress on the AI for Science and National Security initiatives. All of this will build on the exascale foundation and the planning for the next generations of computing that is happening now.

“The ongoing task over the next few years is to turn the good will encoded in the authorization language into the specific resources the programs need,” said Stevens

Alex Larzelere, long-time government policy-watcher and former federal director for the DOE Office of Nuclear Energy’s Modeling and Simulation Energy Innovation Hub, noted, “Even if it was an appropriation, it will likely take a long time (a year or so) to get the money out the door. DOE Office of Science and the NSF are required to use a “peer review” process to fund projects. That starts with a workshop, which leads to developing a “call” for proposals, then proposers have some time to prepare their response, then the responses are peer reviewed, the results of which are then used by the feds to make grant decisions. At that point, the grants have to be negotiated and finally awarded, which really is an authorization to incur expenses. Those then turn into invoices that are submitted, and after all that, actual money is paid out by the government. A long process.”

So it begins, or at least it will begin as soon as President Biden signs the bill, which is expected to be soon.

On balance, applied technology, science security, and workforce readiness gain more emphasis if not equal footing with basic research in the bill. The new TIP NSF Directorate has been directed to work on not more than five “societal, national, and geostrategic challenges” and not more than ten key technology areas. The latter are familiar: artificial intelligence, robotics, materials science and manufacturing, high performance computing, telecommunications, data management, quantum science and technology, biotechnology, energy technology, and “natural and anthropogenic disaster prevention or mitigation.”

Here’s a snapshot of broad DOE highlights excerpted from a summary prepared by Congress. It’s necessary to dig deeper into the bill itself for more detail:

  • Authorizes $8.9 billion for FY 2023, rising to $10.9 billion in FY27 for the Office of Science. This is compared to $7.5 billion enacted in FY22.
  • Provides a 6% annual increase for each of the Office’s core research programs.
  • Ensures Office of Science construction projects and upgrades of major scientific user
  • facilities have the resources they need to be completed on time and on budget, while incorporating COVID-19 related impacts.
  • Authorization levels for construction activities and total program funding ensure that support for core research is able to grow annually, independent of each project schedule.
  • Invests in the fight against climate change. Through its support of research to advance the next generation of energy storage, solar, hydrogen, critical materials, fusion energy, manufacturing, carbon removal, and bioenergy technologies, among many other areas, the Office of Science is uniquely positioned to help us reach our shared goals of developing energy that is clean, sustainable, reliable, and affordable.

NIST’s growing importance was also highlighted in the bill. Overall funding for the agency will increase by 40 percent to $1.5 billion in fiscal year 2023, with smaller but steady growth thereafter to $2.3 billion in fiscal year 2027. “This funding would help advance important research and support standards development for industries of the future, including quantum information science, artificial intelligence, cybersecurity, privacy, engineering biology, advanced communications technologies, semiconductors, and much more,” according to House summary documents.

EPSCoR (Estab­lished Program to Stim­u­late Com­pet­i­tive Research) also received a boost. The new bill starts the NSF set-asides for EPSCoR at 15% of its funding increasing it to 20% over seven years. “The bill establishes an analogous set-aside for the DOE Office of Science, mandating at least 10% of the R&D funds it distributes to universities each year go to institutions in EPSCoR jurisdictions, a narrower requirement than proposed in USICA,” according to the Physics Today article.

As you can see, combing through the bill’s many provisions is daunting and there’s no easy-to-access compendium of tables or charts. Translating its provisions into programs will likewise be daunting. The House has provided a fact sheet sheet for the bill covering major provisions. Below are links to summaries of various sections also provided by the House. Good hunting.

REVITALIZING AMERICAN SCIENCE AND INNOVATION FOR THE 21ST CENTURY (House Fact Sheet)

“At the very core of the CHIPS and Science Act is the goal to revitalize American science and innovation for the 21st century. It is time for us to renew and strengthen federal support for the kinds of research and development initiatives that have long made the U.S. a beacon of excellence in science and innovation.

“The CHIPS and Science Act is ushering in a bold and prosperous future for our nation by ensuring we are able to compete globally and remain global leaders in science. Every section of the bill has a key role to play in achieving that goal. Learn more by viewing the fact sheets below.”

Title I: Department of Energy Science for the Future

Title II: National Institute of Standards and Technology For The Future

Title III: National Science Foundation for the Future

Title III: Bioeconomy Research and Development

Title V: Broadening Participation in Science

Title VI: Miscellaneous Science and Technology Provisions

Title VII: National Aeronautics and Space Administration Authorization Act


Related coverage: US CHIPS Act Close to Being Signed into Law

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

From Exasperation to Exascale: HPE’s Nic Dubé on Frontier’s Untold Story

December 2, 2022

The Frontier supercomputer – still fresh off its chart-topping 1.1 Linpack exaflops run and maintaining its number-one spot on the Top500 list – was still very much in the spotlight at SC22 in Dallas last month. Six Read more…

At SC22, Carbon Emissions and Energy Costs Eclipsed Hardware Efficiency

December 2, 2022

The race to ever-better flops-per-watt and power usage effectiveness (PUE) has, historically, dominated the conversation over sustainability in HPC – but at SC22, held last month in Dallas, something felt different. Ac Read more…

HPC Career Notes: December 2022 Edition

December 1, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

IBM Quantum Summit: Osprey Flies; Error Handling Progress; Quantum-centric Supercomputing

December 1, 2022

Part scorecard, part grand vision, IBM’s annual Quantum Summit held last month is a fascinating snapshot of IBM’s progress, evolving technology roadmap, and issues facing the quantum landscape broadly. Thankfully, IB Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances – including ones targeting HPC – at its AWS re:Invent 2022 Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

From Exasperation to Exascale: HPE’s Nic Dubé on Frontier’s Untold Story

December 2, 2022

The Frontier supercomputer – still fresh off its chart-topping 1.1 Linpack exaflops run and maintaining its number-one spot on the Top500 list – was still v Read more…

At SC22, Carbon Emissions and Energy Costs Eclipsed Hardware Efficiency

December 2, 2022

The race to ever-better flops-per-watt and power usage effectiveness (PUE) has, historically, dominated the conversation over sustainability in HPC – but at S Read more…

HPC Career Notes: December 2022 Edition

December 1, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

IBM Quantum Summit: Osprey Flies; Error Handling Progress; Quantum-centric Supercomputing

December 1, 2022

Part scorecard, part grand vision, IBM’s annual Quantum Summit held last month is a fascinating snapshot of IBM’s progress, evolving technology roadmap, and Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire