Not Just Cash for Chips – The New CHIPS and Science Act Boosts NSF, DOE, NIST

By John Russell

August 3, 2022

Update: The CHIPS and Science Act was signed into law on Aug. 9, 2022.

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the CHIPS and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget is increased and a new Directorate for Technology, Innovation, and Partnership (TIP) is added. NIST’s profile and funding gets big boosts. DOE’s Office of Science office also fared well.

The final bill blends core science provisions of the America COMPETES Act of 2022 (House) with the Senate’s 2021 US Innovation and Competition Act (USICA). Fully parsing the bill’s 1,000-plus pages of provisions will take time. While most of the recent attention has focused on the $54.2B provided for chipmaking, the bill actually calls for about $280 billion in spending. The caveat is the bulk of the spending has only been authorized and must subsequently be appropriated by congress.

It’s been a long path forward for the legislation, which got its start in 2020 as the Endless Frontier Act, an ambitious proposal by Senators Chuck Schumer (D-NY) and Todd Young (R-IN) to dramatically expand NSF (see HPCwire coverage, $100B Plan Submitted for Massive Remake and Expansion of NSF). Inevitably, the supply-chain shortages caused by the pandemic, emerging geopolitical tensions, and recent cyber-security concerns injected a wider compass of elements into the legislation as it moved through Congress.

Physics Today has excellent recap of the final bill and its re-shaping process. Here’s brief excerpt of non-chip funding highlights from that article:

“[The bill] recommends that over the next five years Congress should roughly double the annual budgets of NSF and NIST, to $18.9 billion and $2.3 billion, respectively, and increase funding for the DOE Office of Science by nearly 50%, to $10.8 billion. It also proposes that parts of DOE beyond the Office of Science receive $4 billion to upgrade infrastructure at national labs and $11.2 billion for work on the same key technology areas supported by the TIP directorate.

“Those figures mostly represent a blend of proposals offered in the House and Senate bills. One exception is that the bill entirely drops a USICA provision that recommended an immediate doubling of the budget of the Defense Advanced Research Projects Agency. It also omits budget targets for NASA but still provides policy direction for the agency.

“In contrast to the semiconductor funds in the bill, the agency figures are only authorizations, meaning Congress is not obligated to provide the money and will decide whether to meet the targets on a year-by-year basis. Congressional appropriations often fall well short of authorized levels, as occurred with those set by the America COMPETES Acts of 2007 and 2010, which also proposed ramping up the budgets of NSF, DOE, and NIST.”

Bloomberg ran an interesting, positive-but-cautionary editorial that reflects a chorus of opinion. The dust has clearly not yet settled for this bill. There are winners and losers and there will be lot to track moving forward. (see overall summary and NSF drill down below taken from different congressional documents)

The HPC community, perhaps not surprisingly, has been generally supportive of the bill. The devil will be in the details.

Rick Stevens, associate laboratory director, Argonne National Laboratory, said, “I think in general getting growth in the authorization is helpful, I would like to see the physical science budgets on a 10-year doubling trajectory and this helps with that.

Rick Stevens, ANL

“The specifics of course matter as DOE’s facility strategy and research priorities are being refined and updated frequently. As a general statement, we want to see progress on: building out the exascale facilities ecosystem at the labs, continuing support for software and applications for exascale, rebuilding the base research math and CS programs that were used to bootstrap exascale, starting new facilities investments for edge computing with the DOE experimental facilities and of course the investments needed to drive progress on the AI for Science and National Security initiatives. All of this will build on the exascale foundation and the planning for the next generations of computing that is happening now.

“The ongoing task over the next few years is to turn the good will encoded in the authorization language into the specific resources the programs need,” said Stevens

Alex Larzelere, long-time government policy-watcher and former federal director for the DOE Office of Nuclear Energy’s Modeling and Simulation Energy Innovation Hub, noted, “Even if it was an appropriation, it will likely take a long time (a year or so) to get the money out the door. DOE Office of Science and the NSF are required to use a “peer review” process to fund projects. That starts with a workshop, which leads to developing a “call” for proposals, then proposers have some time to prepare their response, then the responses are peer reviewed, the results of which are then used by the feds to make grant decisions. At that point, the grants have to be negotiated and finally awarded, which really is an authorization to incur expenses. Those then turn into invoices that are submitted, and after all that, actual money is paid out by the government. A long process.”

So it begins, or at least it will begin as soon as President Biden signs the bill, which is expected to be soon.

On balance, applied technology, science security, and workforce readiness gain more emphasis if not equal footing with basic research in the bill. The new TIP NSF Directorate has been directed to work on not more than five “societal, national, and geostrategic challenges” and not more than ten key technology areas. The latter are familiar: artificial intelligence, robotics, materials science and manufacturing, high performance computing, telecommunications, data management, quantum science and technology, biotechnology, energy technology, and “natural and anthropogenic disaster prevention or mitigation.”

Here’s a snapshot of broad DOE highlights excerpted from a summary prepared by Congress. It’s necessary to dig deeper into the bill itself for more detail:

  • Authorizes $8.9 billion for FY 2023, rising to $10.9 billion in FY27 for the Office of Science. This is compared to $7.5 billion enacted in FY22.
  • Provides a 6% annual increase for each of the Office’s core research programs.
  • Ensures Office of Science construction projects and upgrades of major scientific user
  • facilities have the resources they need to be completed on time and on budget, while incorporating COVID-19 related impacts.
  • Authorization levels for construction activities and total program funding ensure that support for core research is able to grow annually, independent of each project schedule.
  • Invests in the fight against climate change. Through its support of research to advance the next generation of energy storage, solar, hydrogen, critical materials, fusion energy, manufacturing, carbon removal, and bioenergy technologies, among many other areas, the Office of Science is uniquely positioned to help us reach our shared goals of developing energy that is clean, sustainable, reliable, and affordable.

NIST’s growing importance was also highlighted in the bill. Overall funding for the agency will increase by 40 percent to $1.5 billion in fiscal year 2023, with smaller but steady growth thereafter to $2.3 billion in fiscal year 2027. “This funding would help advance important research and support standards development for industries of the future, including quantum information science, artificial intelligence, cybersecurity, privacy, engineering biology, advanced communications technologies, semiconductors, and much more,” according to House summary documents.

EPSCoR (Estab­lished Program to Stim­u­late Com­pet­i­tive Research) also received a boost. The new bill starts the NSF set-asides for EPSCoR at 15% of its funding increasing it to 20% over seven years. “The bill establishes an analogous set-aside for the DOE Office of Science, mandating at least 10% of the R&D funds it distributes to universities each year go to institutions in EPSCoR jurisdictions, a narrower requirement than proposed in USICA,” according to the Physics Today article.

As you can see, combing through the bill’s many provisions is daunting and there’s no easy-to-access compendium of tables or charts. Translating its provisions into programs will likewise be daunting. The House has provided a fact sheet sheet for the bill covering major provisions. Below are links to summaries of various sections also provided by the House. Good hunting.

REVITALIZING AMERICAN SCIENCE AND INNOVATION FOR THE 21ST CENTURY (House Fact Sheet)

“At the very core of the CHIPS and Science Act is the goal to revitalize American science and innovation for the 21st century. It is time for us to renew and strengthen federal support for the kinds of research and development initiatives that have long made the U.S. a beacon of excellence in science and innovation.

“The CHIPS and Science Act is ushering in a bold and prosperous future for our nation by ensuring we are able to compete globally and remain global leaders in science. Every section of the bill has a key role to play in achieving that goal. Learn more by viewing the fact sheets below.”

Title I: Department of Energy Science for the Future

Title II: National Institute of Standards and Technology For The Future

Title III: National Science Foundation for the Future

Title III: Bioeconomy Research and Development

Title V: Broadening Participation in Science

Title VI: Miscellaneous Science and Technology Provisions

Title VII: National Aeronautics and Space Administration Authorization Act


Related coverage: US CHIPS Act Close to Being Signed into Law

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire