Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

By HPCwire Editorial Team

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL’s journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role of the Exascale Computing Project, insights into architectural directions and evolving HPC-AI synergies. This interview was conducted by email earlier this year.

Bronson, congratulations on being named a 2022 HPCwire Person to Watch! Can you give us a summary overview of your responsibilities at Oak Ridge Leadership Computing Facility and what your position entails?

Bronson Messer

As the director of science for the OLCF, I’m responsible for marshalling all our resources toward making sure the science that only leadership computing can enable gets done. That job starts before an allocation is made on the machines, continues through the computational campaigns, and really doesn’t have a formal end, as I continue to communicate the impact made by those projects to a wide variety of audiences even years after they are over. It’s a great job for a science junkie like me: I get to develop a more-than-pedestrian understanding about the full gamut of science we support at OLCF (i.e., almost all scientific disciplines) while “living close” to some of the world’s most powerful computers. The little Appalachian boy programming a TRS-80 Model 1 that was me in the early 80’s would be very jealous.

Please highlight some of the successes that Oak Ridge has had on the path to exascale. (HW, SW, applications, people – anything!)

I think our biggest successes on the road to exascale are wrapped up in the chance we took with Titan back at the beginning of the last decade. There was considerable skepticism when we first adopted hybrid CPU-GPU computing, going all-in with Titan. We have continued along that path with Summit, a path that has proven fruitful as we now stand on the precipice of exascale.

That journey is as much about the people we have deployed around the machines and their expertise as it is about the hardware. I have been especially fortunate to work alongside some of the most skilled and experienced folks in HPC over the past decade and a half, across all the various aspects of endeavor that are necessary to deploy resources at the scale we have. In particular, our liaison model – pairing domain scientist who have top-notch HPC skills with individual projects – is a methodology that has enabled the arrival at exascale along the road of hybrid-node computing in a real way.

How has your team interfaced with the Exascale Computing Project (ECP)? What can you share about the ECP’s role in supporting exascale-readiness from your perspective?

We are close partners with ECP. There is hardly a facet of the project that OLCF is not deeply involved in, from application development to hardware and integration. We have provided the primary development and testing platform for all the ECP application development and software technology teams in the form of Summit, to the tune of a few million node-hours per year over the past few years. We also understand the ECP teams to be part of our traditional early-science teams. We have instantiated the third version of our Center for Accelerated Application Readiness (CAAR) to prepare a group of applications for Frontier, and we consider the ECP development teams to be a part of that. Indeed, many of the same OLCF folks working with our CAAR teams are also working on ECP apps and other software. The ECP teams are also part of the first group of users on our test and development system for Frontier. I anticipate the ECP apps will deliver some of our earliest scientific results on Frontier.

Milestones are inspiring and exciting. What excites you most about entering the exascale era? What are some examples of the science and hopefully breakthroughs that will be unlocked? In what ways will having exascale systems – and I mean the entire ecosystem not just the hardware – be game-changing?

The great thing (to me, anyway) about supercomputing is that there is no one “killer app.” Supercomputing is useful across the entire scientific enterprise, so the list of new insights and questions that will gleaned from exascale computing is … countably infinite. But I do have a couple of places where I think the effect will be especially sharp and profound. The first is in the design cycle for engineering in aerospace, CFD, and related fields. The ability to do design simulations with the requisite physical fidelity to deploy real machines and do that on human time scales (i.e., about a day or overnight) is a real game-changer for a lot of researchers, in academia and in industry. Related to that is the continuing quest to understand turbulence, the last great classical physics problem. Resolution – meaning memory – is required to make progress on this front, and Frontier will provide a significant jump. The ability to resolve convection in the atmosphere on roughly kilometer scales is a place where this additional resolution isn’t just gratuitous. Rather, it leads to new physics and new understanding.

In addition, we are fielding huge storage systems as part of Frontier. The ability to quickly query very large collections of data and do non-trivial amounts of compute on those data will lead to insights in a number of fields, with drug discovery being a very important example.

Heterogeneous computing architecture, largely dependent upon accelerators (GPUs mostly), has become the dominant approach to supercomputing (with the notable exception of Top500 leader Fugaku) and is the backbone of the U.S. exascale program. Where do you see computer architecture headed? What will be the follow-on to today’s dominant heterogeneous (CPU plus accelerator) landscape?

I think the general outlines of CPU+accelerator computing probably has quite a bit of gas left in it. More important to developers is the abstraction of the memory hierarchy into “close and fast” and “far and slow” memory spaces. That model has been with us for a while, it’s just made more obvious and, maybe, important, with hybrid-node computing. The compute engines might change a bit, but having that kind of structure and having heterogeneity on the node are likely going to persist for a while. That doesn’t mean we might not field multiple partitions of differing HW in the future (i.e. push some heterogeneity up from the node level), but I think that might be more a matter of expedience for getting science done: To make sure all the steps of the process of actually getting insight out of a computational experiment, data analysis, or inference are done as efficiently as possible.

What is the opportunity for bringing HPC and AI capabilities together in one architecture? I have heard it said (I forget by whom!) that Summit is (already) the world’s first big HPC-AI supercomputer. What is the state of adoption/implementation for converged AI-HPC workflows? Do you also see a need for purpose-built AI architectures (like Cerebras, SambaNova, Groq, etc)?

We have recently looked at this idea that HPC and AI are coming together, based on what we see in our user programs. That confluence is already here. A large fraction of the projects we support in Summit make use of both “traditional” (I really hate that moniker for this) simulation and AI and ML techniques. These projects use AI/ML in a number of steps in their computational campaigns as well, from before the first simulation run to train surrogate models, to design of experiments, and through the analysis after the data are generated.

If the purpose-built architectures can be made amenable to joining in on all these steps – through policy or software or both – then I think the acceleration they hope to achieve can be as impactful as, for example, the Tensor Cores on Summit proved to be.

It has been proposed that in the not-so-distant future, quantum accelerators will be integrated into either an HPC architecture or workflow. How do you see these technologies coming together? Is this something OLCF is preparing for?

OLCF has an active Quantum Computing User Program where we manage access to a number of commercial quantum computing providers. We are also actively soliciting proposals to our Director’s Discretionary allocation program for “hybrid” proposals that want to take advantage of these resources coupled with an allocation on Summit.

I’m most excited for the promise of quantum computing to help solve problems that are already “quantum.” Some of these problems are treated classically now because we can’t figure out how to write software to solve the “real” quantum equations fast enough. One that is particularly interesting to me is the idea of quantum kinetics for neutrinos in dense astrophysical environments like neutron stars and core-collapse supernovae. I think we are years away from having “quantum accelerators” hanging off HPC nodes, solving the quantum kinetic equations that will tell us how neutrinos change flavor in these explosive environments, but maybe a student I help to train will see that happen.

Are there any other computing trends you would like to comment on? Any areas you are concerned about, or identify as in need of more attention/investment?

Moving numbers to and from memory is the single most important bottleneck for scientific computing. This has been known by practitioners in HPC for a long time, and our now partners in AI and ML are quickly pushing right up against this reality as well. There are no easy technical answers to increase memory bandwidth and limit the amount of energy it takes to move those bits, but it should be perhaps the single most motivating notion as we go forward.

Outside of the professional sphere, what can you tell us about yourself – unique hobbies, favorite places, etc.? Is there anything about you your colleagues might be surprised to learn?

I wear my Appalachian origins on my sleeve, so most people who know me know I grew up in the Great Smoky Mountains. A bit of an obsession with fly fishing goes along with that origin story. But not everyone knows that I am an avid lacrosse player and coach, that I finally got my (honorary) high school diploma this past year, or that I’m a multi-day Jeopardy! champion.

Messer is one of 12 HPCwire People to Watch for 2022. You can read the interviews with the other honorees at this link.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire