Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

By HPCwire Editorial Team

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL’s journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role of the Exascale Computing Project, insights into architectural directions and evolving HPC-AI synergies. This interview was conducted by email earlier this year.

Bronson, congratulations on being named a 2022 HPCwire Person to Watch! Can you give us a summary overview of your responsibilities at Oak Ridge Leadership Computing Facility and what your position entails?

Bronson Messer

As the director of science for the OLCF, I’m responsible for marshalling all our resources toward making sure the science that only leadership computing can enable gets done. That job starts before an allocation is made on the machines, continues through the computational campaigns, and really doesn’t have a formal end, as I continue to communicate the impact made by those projects to a wide variety of audiences even years after they are over. It’s a great job for a science junkie like me: I get to develop a more-than-pedestrian understanding about the full gamut of science we support at OLCF (i.e., almost all scientific disciplines) while “living close” to some of the world’s most powerful computers. The little Appalachian boy programming a TRS-80 Model 1 that was me in the early 80’s would be very jealous.

Please highlight some of the successes that Oak Ridge has had on the path to exascale. (HW, SW, applications, people – anything!)

I think our biggest successes on the road to exascale are wrapped up in the chance we took with Titan back at the beginning of the last decade. There was considerable skepticism when we first adopted hybrid CPU-GPU computing, going all-in with Titan. We have continued along that path with Summit, a path that has proven fruitful as we now stand on the precipice of exascale.

That journey is as much about the people we have deployed around the machines and their expertise as it is about the hardware. I have been especially fortunate to work alongside some of the most skilled and experienced folks in HPC over the past decade and a half, across all the various aspects of endeavor that are necessary to deploy resources at the scale we have. In particular, our liaison model – pairing domain scientist who have top-notch HPC skills with individual projects – is a methodology that has enabled the arrival at exascale along the road of hybrid-node computing in a real way.

How has your team interfaced with the Exascale Computing Project (ECP)? What can you share about the ECP’s role in supporting exascale-readiness from your perspective?

We are close partners with ECP. There is hardly a facet of the project that OLCF is not deeply involved in, from application development to hardware and integration. We have provided the primary development and testing platform for all the ECP application development and software technology teams in the form of Summit, to the tune of a few million node-hours per year over the past few years. We also understand the ECP teams to be part of our traditional early-science teams. We have instantiated the third version of our Center for Accelerated Application Readiness (CAAR) to prepare a group of applications for Frontier, and we consider the ECP development teams to be a part of that. Indeed, many of the same OLCF folks working with our CAAR teams are also working on ECP apps and other software. The ECP teams are also part of the first group of users on our test and development system for Frontier. I anticipate the ECP apps will deliver some of our earliest scientific results on Frontier.

Milestones are inspiring and exciting. What excites you most about entering the exascale era? What are some examples of the science and hopefully breakthroughs that will be unlocked? In what ways will having exascale systems – and I mean the entire ecosystem not just the hardware – be game-changing?

The great thing (to me, anyway) about supercomputing is that there is no one “killer app.” Supercomputing is useful across the entire scientific enterprise, so the list of new insights and questions that will gleaned from exascale computing is … countably infinite. But I do have a couple of places where I think the effect will be especially sharp and profound. The first is in the design cycle for engineering in aerospace, CFD, and related fields. The ability to do design simulations with the requisite physical fidelity to deploy real machines and do that on human time scales (i.e., about a day or overnight) is a real game-changer for a lot of researchers, in academia and in industry. Related to that is the continuing quest to understand turbulence, the last great classical physics problem. Resolution – meaning memory – is required to make progress on this front, and Frontier will provide a significant jump. The ability to resolve convection in the atmosphere on roughly kilometer scales is a place where this additional resolution isn’t just gratuitous. Rather, it leads to new physics and new understanding.

In addition, we are fielding huge storage systems as part of Frontier. The ability to quickly query very large collections of data and do non-trivial amounts of compute on those data will lead to insights in a number of fields, with drug discovery being a very important example.

Heterogeneous computing architecture, largely dependent upon accelerators (GPUs mostly), has become the dominant approach to supercomputing (with the notable exception of Top500 leader Fugaku) and is the backbone of the U.S. exascale program. Where do you see computer architecture headed? What will be the follow-on to today’s dominant heterogeneous (CPU plus accelerator) landscape?

I think the general outlines of CPU+accelerator computing probably has quite a bit of gas left in it. More important to developers is the abstraction of the memory hierarchy into “close and fast” and “far and slow” memory spaces. That model has been with us for a while, it’s just made more obvious and, maybe, important, with hybrid-node computing. The compute engines might change a bit, but having that kind of structure and having heterogeneity on the node are likely going to persist for a while. That doesn’t mean we might not field multiple partitions of differing HW in the future (i.e. push some heterogeneity up from the node level), but I think that might be more a matter of expedience for getting science done: To make sure all the steps of the process of actually getting insight out of a computational experiment, data analysis, or inference are done as efficiently as possible.

What is the opportunity for bringing HPC and AI capabilities together in one architecture? I have heard it said (I forget by whom!) that Summit is (already) the world’s first big HPC-AI supercomputer. What is the state of adoption/implementation for converged AI-HPC workflows? Do you also see a need for purpose-built AI architectures (like Cerebras, SambaNova, Groq, etc)?

We have recently looked at this idea that HPC and AI are coming together, based on what we see in our user programs. That confluence is already here. A large fraction of the projects we support in Summit make use of both “traditional” (I really hate that moniker for this) simulation and AI and ML techniques. These projects use AI/ML in a number of steps in their computational campaigns as well, from before the first simulation run to train surrogate models, to design of experiments, and through the analysis after the data are generated.

If the purpose-built architectures can be made amenable to joining in on all these steps – through policy or software or both – then I think the acceleration they hope to achieve can be as impactful as, for example, the Tensor Cores on Summit proved to be.

It has been proposed that in the not-so-distant future, quantum accelerators will be integrated into either an HPC architecture or workflow. How do you see these technologies coming together? Is this something OLCF is preparing for?

OLCF has an active Quantum Computing User Program where we manage access to a number of commercial quantum computing providers. We are also actively soliciting proposals to our Director’s Discretionary allocation program for “hybrid” proposals that want to take advantage of these resources coupled with an allocation on Summit.

I’m most excited for the promise of quantum computing to help solve problems that are already “quantum.” Some of these problems are treated classically now because we can’t figure out how to write software to solve the “real” quantum equations fast enough. One that is particularly interesting to me is the idea of quantum kinetics for neutrinos in dense astrophysical environments like neutron stars and core-collapse supernovae. I think we are years away from having “quantum accelerators” hanging off HPC nodes, solving the quantum kinetic equations that will tell us how neutrinos change flavor in these explosive environments, but maybe a student I help to train will see that happen.

Are there any other computing trends you would like to comment on? Any areas you are concerned about, or identify as in need of more attention/investment?

Moving numbers to and from memory is the single most important bottleneck for scientific computing. This has been known by practitioners in HPC for a long time, and our now partners in AI and ML are quickly pushing right up against this reality as well. There are no easy technical answers to increase memory bandwidth and limit the amount of energy it takes to move those bits, but it should be perhaps the single most motivating notion as we go forward.

Outside of the professional sphere, what can you tell us about yourself – unique hobbies, favorite places, etc.? Is there anything about you your colleagues might be surprised to learn?

I wear my Appalachian origins on my sleeve, so most people who know me know I grew up in the Great Smoky Mountains. A bit of an obsession with fly fishing goes along with that origin story. But not everyone knows that I am an avid lacrosse player and coach, that I finally got my (honorary) high school diploma this past year, or that I’m a multi-day Jeopardy! champion.

Messer is one of 12 HPCwire People to Watch for 2022. You can read the interviews with the other honorees at this link.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Leading Solution Providers

Contributors

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire