Why Standards-Based Parallel Programming Should be in Your HPC Toolbox

By Jeff Larkin, Principal HPC Application Architect at NVIDIA

September 5, 2022

HPC application developers have long relied on programming abstractions that were developed and used almost exclusively within the realm of traditional HPC. OpenMP was created more than 25 years ago to simplify shared-memory parallel computing because programming languages of the day had few to no such features and vendors were developing their own, incompatible abstractions for symmetric multiprocessing.

CUDA C was designed and released by NVIDIA in 2007 as extensions to the C language to support programming massively parallel GPUs, again because the C language lacked the necessary features to support parallelism directly. Both of these programming models have been highly successful because they provide the necessary abstractions to overcome the shortcomings of the languages that they extended in a user-friendly manner.

The landscape has changed a lot, however, in the years since these models were initially released and it’s time to reevaluate where they should fit in a programmer’s toolbox. In this post I discuss why you should be parallel programming natively with ISO C++ and ISO Fortran.

Parallel Programming is Becoming the Standard

Parallel programming was once a niche field reserved only for government labs, research universities, and certain forward-looking industries, but today it is a requirement for all industries. Because of this, mainstream programming languages now support parallel programming natively, and an increasing number of developer tools support these features. It is now possible for applications to be developed to support parallelism from the start, with no need for a serial baseline code.

Such parallel-first codes can be taken to any computer system, whether it’s based on multi-core CPUs, GPUs, FPGAs, or some other novel processor we haven’t thought of yet, and be expected to run on day one. This frees developers from the need to port applications to new systems and enables them to focus on productively optimizing their application or expanding its capabilities instead.

NVIDIA delivers multiple approaches to programming HPC systems, including and enhanced standard language support, incremental directives-based optimization, CUDA platform specialization, and GPU-accelerated libraries.
NVIDIA provides three composable approaches to parallel programming: accelerated standard languages, portable directives-based solutions, and platform specific solutions. This gives developers choices to optimize their efforts according to their productivity, portability, and performance goals.

NVIDIA provides three approaches to programming for our platform, all of which are layered on the foundation of our decades-long investment in accelerated libraries and compilers. All of these approaches are fully composable, giving the programmer the choice of how to best balance their productivity, portability, and performance goals.

ISO Languages Achieve Performance and Portability

New application development should be performed using ISO standard programming languages and the parallel features they provide. There is no better example of portable programming models than the ISO languages, so developers should expect that applications written to these standards will run anywhere. Many of the developers we’ve worked with have found that the performance gains from refactoring their applications using standards-based parallelism in C++ or Fortran are already as good as or better than their existing code.

Some developers have elected to perform further optimizations by introducing portable directives, OpenACC, or OpenMP, to improve data movement or asynchrony and obtain even higher performance. This results in application code that’s still fully portable and high-performance. Developers who want to obtain the highest performance in key parts of their applications may choose to take the additional step of optimizing portions of the application with a lower-level approach, such as CUDA, and take advantage of everything the hardware has to offer. And, of course, all of these approaches interact nicely with our expert-tuned accelerated libraries.

Expanding the Standards to Leverage Innovations

There’s a misconception in the industry that CUDA is the language used by NVIDIA to lock-in users, but in fact it’s our language for innovating and exposing the features of our hardware most directly. CUDA C++ and Fortran are in many ways co-design languages, where we can expose hardware innovations and iterate on the programming model quickly. As best practices are developed in the CUDA programming model, we believe they can and should be codified in standards.

For instance, due to the successes of our customers in utilizing mixed-precision arithmetic, we worked with the C++ committee to standardize extended floating point types in C++23. Thanks in a large part to the work of our math libraries team, we have worked with the community to  propose a C++ extension for a standardized linear algebra interface that will map well to not only our libraries but community-based and proprietary libraries from other vendors as well. We strive to improve parallel programming and asynchrony in the ISO standard languages because it’s the best thing for our customers and the community at large.

What Do Developers Think?

Professor Jonas Latt at the University of Geneva uses nvc++ and the C++ parallel algorithms in the Pallabos library and said that, “The result produces state-of-the-art performance, is highly didactical, and introduces a paradigm shift in cross-platform CPU/GPU programming in the community.”

Dr. Ron Caplan of Predictive Science Inc. said of his experience using nvfortran and Fortran Do Concurrent, “I can now write far fewer directives and still expect high performance from my Fortran applications.”

And Simon McIntosh-Smith from the University of Bristol said when presenting his team’s results using nvc++ and parallel algorithms, “The ISO C++ versions of the code were simpler, shorter, easier to write, and should  be easier to maintain.”

These are just a few of the developers already reaping the rewards of using standards-based parallelism in their development.

Standards-Based Parallel Programming Resources

NVIDIA has a range of resources to help you fall in love with standards-based parallelism.

Our HPC Software Development Kit (SDK)  is a free software package that includes:

  • NVIDIA HPC compilers for C, C++, and Fortran
  • The CUDA NVCC Compiler
  • A complete set of accelerated math libraries, communication libraries, and core libraries for data structures and algorithms
  • Debuggers and profilers

The HPC SDK is freely available on x86, Arm, and OpenPOWER platforms, regardless of whether you own an NVIDIA GPU, and is even Amazon’s HPC software stack for Graviton3.

NVIDIA On-Demand also has several relevant recordings to get you started (try “No More Porting: Coding for GPUs with Standard C++, Fortran, and Python”), as well as our posts on the NVIDIA Developer Blog.

Finally, I encourage you to register for GTC Fall 2022, where you’ll find even more talks about our software and hardware offerings, including more information on standards-based parallel programming.

Jeff Lark, Principal HPC Application Architect at NVIDIA

About Jeff Larkin

Jeff is a Principal HPC Application Architect in NVIDIA’s HPC Software team. He is passionate about the advancement and adoption of parallel programming models for High Performance Computing. He was previously a member of NVIDIA’s Developer Technology group, specializing in performance analysis and optimization of high performance computing applications. Jeff is also the chair of the OpenACC technical committee and has worked in both the OpenACC and OpenMP standards bodies. Before joining NVIDIA, Jeff worked in the Cray Supercomputing Center of Excellence, located at Oak Ridge National Laboratory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire