Why Standards-Based Parallel Programming Should be in Your HPC Toolbox

By Jeff Larkin, Principal HPC Application Architect at NVIDIA

September 5, 2022

HPC application developers have long relied on programming abstractions that were developed and used almost exclusively within the realm of traditional HPC. OpenMP was created more than 25 years ago to simplify shared-memory parallel computing because programming languages of the day had few to no such features and vendors were developing their own, incompatible abstractions for symmetric multiprocessing.

CUDA C was designed and released by NVIDIA in 2007 as extensions to the C language to support programming massively parallel GPUs, again because the C language lacked the necessary features to support parallelism directly. Both of these programming models have been highly successful because they provide the necessary abstractions to overcome the shortcomings of the languages that they extended in a user-friendly manner.

The landscape has changed a lot, however, in the years since these models were initially released and it’s time to reevaluate where they should fit in a programmer’s toolbox. In this post I discuss why you should be parallel programming natively with ISO C++ and ISO Fortran.

Parallel Programming is Becoming the Standard

Parallel programming was once a niche field reserved only for government labs, research universities, and certain forward-looking industries, but today it is a requirement for all industries. Because of this, mainstream programming languages now support parallel programming natively, and an increasing number of developer tools support these features. It is now possible for applications to be developed to support parallelism from the start, with no need for a serial baseline code.

Such parallel-first codes can be taken to any computer system, whether it’s based on multi-core CPUs, GPUs, FPGAs, or some other novel processor we haven’t thought of yet, and be expected to run on day one. This frees developers from the need to port applications to new systems and enables them to focus on productively optimizing their application or expanding its capabilities instead.

NVIDIA delivers multiple approaches to programming HPC systems, including and enhanced standard language support, incremental directives-based optimization, CUDA platform specialization, and GPU-accelerated libraries.
NVIDIA provides three composable approaches to parallel programming: accelerated standard languages, portable directives-based solutions, and platform specific solutions. This gives developers choices to optimize their efforts according to their productivity, portability, and performance goals.

NVIDIA provides three approaches to programming for our platform, all of which are layered on the foundation of our decades-long investment in accelerated libraries and compilers. All of these approaches are fully composable, giving the programmer the choice of how to best balance their productivity, portability, and performance goals.

ISO Languages Achieve Performance and Portability

New application development should be performed using ISO standard programming languages and the parallel features they provide. There is no better example of portable programming models than the ISO languages, so developers should expect that applications written to these standards will run anywhere. Many of the developers we’ve worked with have found that the performance gains from refactoring their applications using standards-based parallelism in C++ or Fortran are already as good as or better than their existing code.

Some developers have elected to perform further optimizations by introducing portable directives, OpenACC, or OpenMP, to improve data movement or asynchrony and obtain even higher performance. This results in application code that’s still fully portable and high-performance. Developers who want to obtain the highest performance in key parts of their applications may choose to take the additional step of optimizing portions of the application with a lower-level approach, such as CUDA, and take advantage of everything the hardware has to offer. And, of course, all of these approaches interact nicely with our expert-tuned accelerated libraries.

Expanding the Standards to Leverage Innovations

There’s a misconception in the industry that CUDA is the language used by NVIDIA to lock-in users, but in fact it’s our language for innovating and exposing the features of our hardware most directly. CUDA C++ and Fortran are in many ways co-design languages, where we can expose hardware innovations and iterate on the programming model quickly. As best practices are developed in the CUDA programming model, we believe they can and should be codified in standards.

For instance, due to the successes of our customers in utilizing mixed-precision arithmetic, we worked with the C++ committee to standardize extended floating point types in C++23. Thanks in a large part to the work of our math libraries team, we have worked with the community to  propose a C++ extension for a standardized linear algebra interface that will map well to not only our libraries but community-based and proprietary libraries from other vendors as well. We strive to improve parallel programming and asynchrony in the ISO standard languages because it’s the best thing for our customers and the community at large.

What Do Developers Think?

Professor Jonas Latt at the University of Geneva uses nvc++ and the C++ parallel algorithms in the Pallabos library and said that, “The result produces state-of-the-art performance, is highly didactical, and introduces a paradigm shift in cross-platform CPU/GPU programming in the community.”

Dr. Ron Caplan of Predictive Science Inc. said of his experience using nvfortran and Fortran Do Concurrent, “I can now write far fewer directives and still expect high performance from my Fortran applications.”

And Simon McIntosh-Smith from the University of Bristol said when presenting his team’s results using nvc++ and parallel algorithms, “The ISO C++ versions of the code were simpler, shorter, easier to write, and should  be easier to maintain.”

These are just a few of the developers already reaping the rewards of using standards-based parallelism in their development.

Standards-Based Parallel Programming Resources

NVIDIA has a range of resources to help you fall in love with standards-based parallelism.

Our HPC Software Development Kit (SDK)  is a free software package that includes:

  • NVIDIA HPC compilers for C, C++, and Fortran
  • The CUDA NVCC Compiler
  • A complete set of accelerated math libraries, communication libraries, and core libraries for data structures and algorithms
  • Debuggers and profilers

The HPC SDK is freely available on x86, Arm, and OpenPOWER platforms, regardless of whether you own an NVIDIA GPU, and is even Amazon’s HPC software stack for Graviton3.

NVIDIA On-Demand also has several relevant recordings to get you started (try “No More Porting: Coding for GPUs with Standard C++, Fortran, and Python”), as well as our posts on the NVIDIA Developer Blog.

Finally, I encourage you to register for GTC Fall 2022, where you’ll find even more talks about our software and hardware offerings, including more information on standards-based parallel programming.

Jeff Lark, Principal HPC Application Architect at NVIDIA

About Jeff Larkin

Jeff is a Principal HPC Application Architect in NVIDIA’s HPC Software team. He is passionate about the advancement and adoption of parallel programming models for High Performance Computing. He was previously a member of NVIDIA’s Developer Technology group, specializing in performance analysis and optimization of high performance computing applications. Jeff is also the chair of the OpenACC technical committee and has worked in both the OpenACC and OpenMP standards bodies. Before joining NVIDIA, Jeff worked in the Cray Supercomputing Center of Excellence, located at Oak Ridge National Laboratory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire