Analog Chips Find a New Lease of Life in Artificial Intelligence

By Agam Shah

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions.

But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better approach. Companies including Innatera, Rain Neuromorphics and others are creating silicon brains with analog circuitry to mimic brain functionality.

The brain is inherently analog, taking in raw sensory data, and these chipmakers are trying to recreate the way the brain’s neurons and synapses work in traditional analog circuitry.

Analog chips can be very good low-power sensing devices, especially for some sound and vision applications, said Kevin Krewell, an analyst at Tirias Research.

“Analog is a closer representation of how the brain acts using distributed memory cells to hold neuron weights or some other way to hold an analog weight,” Krewell said.

AI and machine learning rely mostly on digital chips on the edge or in data centers. But there is a place for analog chips on the edge, like in smartphones or cars, which need instant intelligence without sending data to the cloud, which is used to deliver AI services.

“We don’t aim to replace the complete AI pipeline,” said Sumeet Kumar, CEO of Innatera Nanosystems BV, which is based in Rijkswijk, Netherlands.

Innatera’s third-generation AI chip has 256 neurons and 65,000 synapses and runs inference at under 1 milliwatt, which doesn’t sound like a lot compared to the human brain, which has 86 billion neurons and operates at around 20 watts. But Kumar said it is possible to create a fully connected recurrent network on top, and the chip can operate on coin cell batteries.

The chip is being used by customers to run radar and audio applications, with performance that is competitive to other chips in the same class. The goal of the chip is to incorporate low levels of learning and inference on the device, which is considered a big challenge for AI among participants at the show.

“What we’re trying to do is, what we recognize is that when data is moving from a sensor into the cloud, it actually gets transformed at multiple stages by different kinds of AI. And what we very often see is customers doing low level sensor data handling in the cloud, which is completely unnecessary,” Kumar said.

The Innatera chip takes information coming in from a sensor, which is converted into spikes, and the content of the input is encoded into exactly when these spikes occur.

“That’s exactly how it happens in your brain. When you hear something, there are … tiny hair [cells] in your ear, which actually detects every frequency band and what is the energy within that band. And those hair [cells] will vibrate, produce spikes, which then go into the rest of your auditory cortex. Essentially, we’re following that exact same principle,” Kumar said.

Underlying that principle, inside of the neurons of brains there are calcium ions and low sodium ions, and those concentrations change over time. Innatera’s chip replicates that same sort of behavior using currents.

“We scale how much current is going into the neuron and coming out of the neuron. That’s how we are mimicking the brain,” Kumar said.

The idea isn’t to disrupt the current AI flow into the cloud, but to replace the current crop of AI chips on the edge that aren’t capable of making on-device decisions. The chip also reduces the process of converting analog signals to digital.

“You can’t really translate an analog signal over a long distance because then you actually have degradation. We avoid that by converting that analog signal into a spike,” Kumar said.

The foundation of AI today is based on simulating the action of the brain’s neurons using digital chips and techniques, which has been very successful. Based on the progress in Moore’s law, those digital circuits and networks have gotten larger and faster.

But analog has its problems. For example, it is harder to gain consistency across the analog chips with calibration issues like drift,

“Analog circuits and memory cells don’t scale like digital circuits. And most times analog eventually has to be converted to digital to interact with the rest of the system,” Krewell said.

To be sure, the concept of neuromorphic chips isn’t new. Companies like Intel and IBM have been developing brain-inspired chips, and universities are developing their own versions with analog circuitry. Intel and others have raised awareness of the difference between neuromorphic chips and conventional AI, but the startups felt the need to push out their products as AI compute requirements and power efficiency are growing at an unsustainable pace.

Another AI chip company, Rain Neuromorphics said its brain-mimicking chip would be used in particle accelerators at Argonne National Laboratory.

In a presentation at the AI Hardware Summit, the company didn’t provide much detail on how the chip would be used, but the company’s CEO, Gordon Wilson, said that the chip will act like silicon brains that would help the research lab study and draw conclusions on particle collisions.

The silicon brain will provide on-device intelligence to protect against sensor drift, which can cause faulty data to be fed to AI systems. The concept of sensor drift is similar to model drift in AI, in which bad data fed into a learning model can throw the AI system off course.

Wilson claimed the chip’s on-device capabilities are more power efficient compared to AI in the cloud.

“You need the ability to learn on the fly. You need the ability to train and fine tune against that sensor drift to maintain the performance of this system,” Wilson said.

The first iteration of the Rain chip “will essentially not look radically different from … other analog or mixing of chips,” Wilson said. But it will have the capacity to learn, which will unlock more value.

Wilson pointed to possibly different types of memory, like memristor circuits, providing the ability to learn. Memristors have been under development since the 1960s, and pursued by HP (which later became HPE) to use in a mega-computer called The Machine, but the technology still remains a novelty.

“Memristor serves as a memory resistor. It’s a resistor that can adjust its resistance. It’s used as an artificial synapse,” Wilson said. In a brain, synapses are not required to be perfect, and the requirements will be different for Rain’s memristors.

Venture capitalist Sam Altman, known for his work in AI as CEO of OpenAI, invested $25 million into Rain Neuromorphics earlier this year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire