IBM Study Charts Future of Superconducting-based Quantum Computing

By John Russell

October 19, 2022

Few companies have worked as long or as broadly to develop superconducting-based qubits and quantum computers as IBM. Last month IBM posted a perspective paper – The Future of Quantum Computing with Superconducting Qubits – on arXiv and which has also been accepted but not yet published by the Journal of Applied Physics. Not a quick read, this work presents a fairly comprehensive review of what IBM thinks is needed to advance superconducting-based quantum computing, warts and all.

There are, of course, many qubit technologies being explored (superconducting, neutral atoms, trapped ions, photonics, etc.) upon which to base quantum computing platforms. It’s not yet clear which, if any, will become dominant or which may emerge as more effective for particular applications. Among the common challenges facing all of the qubit technologies are: how to scale up quantum system size (qubit counts); development and deployment effective error correction and error mitigation; and the need for hybrid architectures leveraging both classical and quantum systems.

The IBM authors[i] note, for example, that “For quantum computing to succeed in changing what it means to compute, we need to change the architecture of computing. Quantum computing is not going to replace classical computing but rather become an essential part of it. We see the future of computing being a quantum-centric supercomputer where QPUs, CPUs, and GPUs all work together to accelerate computations.”

This latest perspective from IBM presents deeper dive into many specific issues facing superconducting-based quantum computing, many of which are shared by other qubit modalities. For close watchers of the unfolding quantum technology landscape, the study is well worth reading.

Capturing the key points of the paper in sufficient detail in a short article is impractical. With apologies for the length of the excerpt, here is the study’s conclusion which summarizes most of the central ideas:

“We have charted how we believe that quantum advantage in some scientifically relevant problems can be achieved in the next few years. This milestone will be reached through (1) focusing on problems that admit a super-polynomial quantum speedup and advancing theory to design algorithms—possibly heuristic—based on intermediate depth circuits that can out- perform state-of-the-art classical methods, (2) the use of a suite of error mitigation techniques and improvements in hardware-aware software to maximize the quality of the hardware results and extract useful data from the output of noisy quantum circuits, (3) improvements in hardware to increase the fidelity of QPUs to 99.99% or higher, and (4) modular architecture designs that allow parallelization (with classical communication) of circuit execution. Error mitigation techniques with mathematical performance guarantees, like PEC (probabilistic error correction), albeit carrying an exponential classical processing cost, provide a mean to quantify both the expected run time and the quality of processors needed for quantum advantage. This is the near-term future of quantum computing.

“Progress in the quality and speed of quantum systems will improve the exponential cost of classical processing required for error mitigation schemes, and a combination of error mitigation and error correction will drive a gradual transition toward fault-tolerance. Classical and quantum computations will be tightly integrated, orchestrated, and managed through a serverless environment that allows developers to focus only on code and not infrastructure. This is the mid-term future of quantum computing.

“Finally, we have seen how realizing large-scale quantum algorithms with polynomial run times to enable the full range of practical applications requires quantum error correction, and how error correction approaches like the surface code fall short of the long-term needs owing to their inefficiency in implementing non-Clifford gates and poor encoding rate. We outlined a way forward provided by the development of more efficient LDPC codes with a high error threshold, and the need for modular hard- ware with non-2D topologies to allow the investigation of these codes. This more efficient error correction is the long-term future of quantum computing.”

The full paper contains a fair amount of detail on key topics and is best read in full.

Link to pre-print of IBM paper (The Future of Quantum Computing with Superconducting Qubits), https://arxiv.org/abs/2209.06841

[i] Sergey Bravyi,1 Oliver Dial,1 Jay M. Gambetta,1 Dar ́ıo Gil,1 and Zaira Nazario1 IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire