Chipmakers Looking at New Architecture to Drive Computing Ahead

By Agam Shah

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward.

The chipmakers are coalescing around a sparse computational approach, which involves bringing computing to data instead of vice versa, which is what current computing is built around.

The concept is still far out, but a new design is needed as the current computing model used to scale the world’s fastest supercomputers is unsustainable in the long run, said William Harrod, a program manager at the Intelligence Advanced Research Projects Activity (IARPA), during a keynote at the SC22 conference last week.

The current model is inefficient as it cannot keep up with the proliferation of data. Users need to wait for hours to receive the results of data sent to computing hubs with accelerators and other resources. The new approach will shorten the distance that data travels, process information more efficiently and intelligently, and generate results faster, Harrod said during the keynote.

“There needs to be an open discussion because we’re transitioning from a world of dense computation… into a world of sparse computation. It is a big transition, and companies are not going to move forward with changing designs until we can verify and validate these ideas,” Harrod said.

One of the goals behind the sparse computing* approach is to generate results in close to real-time or in short time, and see the results as the data is changing, said Harrod, who previously ran research programs at the Department of Energy that ultimately led to the development of exascale systems.

The current computing architecture pushes all data and computing problems – big and small – over networks into a web of processors, accelerators and memory substructures. There are more efficient ways to solve problems, Harrod said.

The intent of a sparse computing system is to solve the data-movement problem. Current network designs and interfaces could bog down computing by making data move over long distances. Sparse computing cuts the distance that data travels, processing it smartly on the nearest chips, and placing equal emphasis on software and hardware.

“I don’t see the future as relying on just getting a better accelerator, because getting a better accelerator won’t solve the data movement problem. In fact, most likely, the accelerator is going to be some sort of standard interface to the rest of the system that is not designed at all for this problem,” Harrod said.

Harrod learned a lot from designing exascale systems. One takeaway was that scaling up computing speed under the current computing architecture – which is modeled around on the von Neumann architecture – wouldn’t be feasible in the long run.

Another conclusion was that energy costs of moving data over long distances amounted to wastage. The Department of Energy’s original goal was to create an exascale system in the 2015-2016 timeframe running at 20 megawatts, but it took a lot longer. The world’s first exascale system, Frontier, which cracked the Top500 list earlier this year, draws 21 megawatts.

“We have incredibly sparse data sets, and the operations that are performed on the datasets are very few. So you do a lot of movement of data, but you don’t get a lot of operations out of it. What you really want to do is efficiently move the data,” Harrod said.

Not every computing problem is equal, and sticking small and big problems on GPUs is not always the answer, Harrod said. In a dense computing model, moving smaller problems into high-performance accelerators is inefficient.

IARPA’s computing initiative, called AGILE (short for Advanced Graphical Intelligence Logical Computing Environment), is designed to “define the future of computing based on the data movement problem, not on floating point units of ALUs,” Harrod said.

Computation relies typically on generating results from unstructured data distributed over a wide network of sources. The sparse computing model involves breaking up the dense model into a more distributed and asynchronous computing system where computing comes to data where it is needed. The assumption is that localized computation does a better job and reduces the data travel time.

The software weighs equally, with a focus on applications like graph analytics, where the strength between data connections is continuously analyzed.  The sparse computing model also applies to machine learning, statistical methods, linear algebra and data filtering.

IARPA signed six contracts with organizations that include AMD, Georgia Tech, Indiana University, Intel Federal LLC, Qualcomm, University of Chicago on the best approach to developing the non-von Neumann computing model.

“There’s going to be an open discussion of the ideas that are being funded,” Harrod said.

The proposals suggest technological approaches such as the development of data-driven compute elements, and some of those technologies are already there, like CPUs with HBM memory and memory modules on substrates, Harrod said, adding “it doesn’t solve all the problems we have here, but it is a step in that direction.”

The second technological approach involves intelligent mechanisms to move data. “It’s not just a question of a floating point sitting there doing load storage – that’s not an intelligent mechanism for moving data around,” Harrod said.

Most importantly there needs to be a focus on the runtime system as an orchestrator of the sparse computing system.

“The assumption here is that these systems are doing something all the time. You really need to have something that is looking to see what is happening. You don’t want to have to be a programmer who takes total control of all this – then we’re all in serious trouble,” Harrod said.

The runtime will be important in creating the real-time nature of the computing environment.

“We want to be in a predictive environment versus a forensic environment,” Harrod said.

The proposals will need to be verified and validated via tools like FireSim, which measures the performance of novel architectures, Harrod said.


Approaches of the six partners (aka Performers in IARPA-speak):






* Sparse computing here is distinct from the established concept of “sparsity” in HPC and AI, in which a matrix structure is sparse if it contains mostly zeros.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire