Microsoft and ETH Take Aim at Quantum Computing’s Hype (and Promise)

By John Russell

May 2, 2023

A fascinating ACM paper by researchers Torsten Hoefler (ETH Zurich), Thomas Häner (Microsoft*) and Matthias Troyer (Microsoft) – “Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage” – and a Microsoft blog published yesterday by Troyer bring a much-needed dose of reality to the quantum computing conversation.

There’s no question that the excitement around quantum computing has produced a wide range of expectations and a deluge of hype. Today, quantum computers are far from the fault-tolerant ideal that will be needed to fulfill quantum computing’s promise. So-called NISQ (noisy intermediate-scale quantum) computers, with a relatively small number of error-prone qubits (tens to ~300 physical qubits), are today’s reality.

As the quantum ecosystem has expanded – hardware, software, middleware, etc. – a vigorous debate as arisen around whether early versions of NISQ quantum systems, hybrid classical-NISQ systems, or even so-called quantum-inspired algorithms run on classical systems can deliver some form of quantum advantage today. Frankly, you can be forgiven any confusion around what this really means, given the growing diversity of sales pitches and the many shifting definitions of quantum advantage.

Broadly, there is agreement that fault-tolerant quantum computing is the endgame and that it is years away (five, 10, 20 years; take your pick). Current thinking is that around a million physical qubits will be needed to deliver 10,000 error-corrected qubits.

What will we be able to do with such a machine that we can’t do on advanced classical HPC system?

Matthias Troyer, Microsoft

This highly-regarded trio of researchers** (Troyer, Hoefler and Häner) set out to determine which applications will indeed benefit from quantum computing. “The promise of quantum computing at scale is real. It will solve some of the hardest challenges facing humanity. However, it will not solve every challenge,” wrote Troyer in his blog.

Here’s an excerpt from the blog:

“Many problems facing the world today boil down to chemistry and material science problems. Better and more efficient electric vehicles rely on finding better battery chemistries. More effective and targeted cancer drugs rely on computational biochemistry. And materials that can last long enough to be useful, but then biodegrade quickly afterwards, rely on discoveries in these fields.

“If quantum computers only benefited chemistry and material science, that would be enough. There is a reason that the major eras of innovation—Stone Age, Bronze Age, Iron Age, Silicon Age—are named for materials. Innovations in chemistry and material science are estimated to have an impact on 96 percent of all manufactured goods, which impact 100 percent of humanity.

“Our framework for evaluating quantum practicality shows that chemistry and material science problems benefit from quantum speedup because activities like simulating the interactions of a single chemical can be represented by a limited number of interaction strengths between electrons in their orbitals. While many approximate calculations of their properties are routinely performed, the operations are exponentially complex on classical computers, but efficient on quantum computers, falling within our stated guidelines.”

To evaluate quantum versus classical computing potential, the researchers created a general model of quantum computer capabilities and shortcomings. The idea was to compare a scaled quantum computer’s hypothetical performance (with “10,000 fast, error-corrected logical qubits, or about one million physical qubits”) to a classical computer with a single state-of-the-art GPU.

“For our analysis, we set a break-even point of two weeks, meaning a quantum computer should be able to perform better than a classical computer on problems that would take a quantum computer not more than two weeks to solve. Comparing the hypothetical future quantum computer to a single classical GPU available today, one finds that more than quadratic speedup—and ideally super-polynomial speedup—is needed. This is a significant finding since many proposed applications of quantum computing rely on the quadratic speedup of specific algorithms, such as Grover’s algorithm,” wrote Troyer in the blog.

Shown below are selected figures/tables from the Communications of the ACM paper. As always, it’s best to read the paper directly.

Table 2. Crossover operation counts for quantum algorithms with quadratic, cubic, and quartic speedups.

In the paper, the authors strike a cautious note.

“To establish reliable guidelines, or lower bounds for the required speedup of a quantum computer, we err on the side of being optimistic for quantum and overly pessimistic for classical computing. Despite our overly optimistic assumptions, our analysis shows a wide range of often-cited applications is unlikely to result in a practical quantum advantage without significant algorithmic improvements. We compare the performance of only a single classical chip fabricated like the one used in the Nvidia A100 GPU that fits around 54 billion transistors with an optimistic assumption for a hypothetical quantum computer that may be available in the next decades with 10,000 error-corrected logical qubits, 10μs gate time for logical operations, the ability to simultaneously perform gate operations on all qubits and all-to-all connectivity for fault tolerant two-qubit gates,” they write.

As key insights, they bullet out the following:

  • “Most of today’s quantum algorithms may not achieve practical speedups. Material science and chemistry have a huge potential and we hope more practical algorithms will be invented based on our guidelines.”
  • “Due to limitations of input and output bandwidth, quantum computers will be practical for “big compute” problems on small data, not big data problems.”
  • “Quadratic speedups delivered by algorithms such as Grover’s search are insufficient for practical quantum advantage without significant improvements across the entire software/hardware stack.”

In many ways, it’s not clear if the ACM paper expresses a half-empty or half-full view. It should be noted that Hoefler was fairly skeptical of early quantum claims on a SC22 panel last November (see HPCwire article, “Quantum – Are We There (or Close) Yet? No, Says the Panel”).

Under the heading of practical and impractical applications, the researchers write in their ACM paper:

“We can now use these considerations to discuss several classes of applications where our fundamental bounds draw a line for quantum practicality. The most likely problems to allow for a practical quantum advantage are those with exponential quantum speedup. This includes the simulation of quantum systems for problems in chemistry, materials science, and quantum physics, as well as cryptanalysis using Shor’s algorithm. The solution of linear systems of equations for highly structured problems also has an exponential speedup, but the I/O limitations discussed above will limit the practicality and undo this advantage if the matrix has to be loaded from memory instead of being computed based on limited data or knowledge of the full solution is required (as opposed to just some limited information obtained by sampling the solution).

“Equally important, we identify likely dead ends in the maze of applications. A large range of problem areas with quadratic quantum speedups, such as many current machine learning training approaches, accelerating drug design and protein folding with Grover’s algorithm, speeding up Monte Carlo simulations through quantum walks, as well as more traditional scientific computing simulations including the solution of many non-linear systems of equations, such as fluid dynamics in the turbulent regime, weather, and climate simulations will not achieve quantum advantage with current quantum algorithms in the foreseeable future. We also conclude that the identified I/O limits constrain the performance of quantum computing for big data problems, unstructured linear systems, and database search based on Grover’s algorithm such that a speedup is unlikely in those cases. Furthermore, Aaronson et al.1 show the achievable quantum speedup of unstructured black-box algorithms is limited to O(N4). This implies that any algorithm achieving higher speedup must exploit structure in the problem it solves.

“These considerations help with separating hype from practicality in the search for quantum applications and can guide algorithmic developments. Specifically, our analysis shows it is necessary for the community to focus on super-quadratic speedups, ideally exponential speedups, and one needs to carefully consider I/O bottlenecks when deriving algorithms to exploit quantum computation best. Therefore, the most promising candidates for quantum practicality are small-data problems with exponential speedup. Specific examples where this is the case are quantum problems in chemistry and materials science, which we identify as the most promising application. We recommend using precise requirements models to get more reliable and realistic (less optimistic) estimates in cases where our rough guidelines indicate a potential practical quantum advantage.”

Apologies for the lengthy excerpting to both Microsoft and ACM, but it seems important to add credible cautionary comment to the ongoing quantum conversation. Balancing pragmatism with ongoing (and potentially revenue-generating) activity is a difficult balance for most companies developing quantum offerings.

Troyer, for example, balances the cautionary aspect of the paper with a more buoyant section in his blog: “While scaled quantum computing is required to solve the hardest, most complex chemistry and materials science problems, progress can be made today with Azure high-performance computing. For example, Johnson Matthey and Microsoft Azure Quantum chemists have accelerated some quantum chemistry calculations in their search for hydrogen fuel cell catalysts by combining high-performance computing and specific quantum functions to reduce the turnaround time for their scaled workloads from six months to a week.”

Stay tuned.

* Häner was at Microsoft during the work and has since moved to AWS

** Authors

Torsten Hoefler is Consulting Researcher at Microsoft Corporation, Redmond, WA, USA, and a professor at ETH Zurich, Switzerland.

Thomas Häner is Research Scientist at Amazon Web Services, Zurich, Switzerland. This work was done when he worked at Microsoft, Zurich, prior to his joining AWS.

Matthias Troyer is Technical Fellow and Corporate Vice President at Microsoft, Redmond, WA, USA.

Link to Microsoft blog: https://cloudblogs.microsoft.com/quantum/2023/05/01/quantum-advantage-hope-and-hype/

Link to ACM paper: https://cacm.acm.org/magazines/2023/5/272276-disentangling-hype-from-practicality-on-realistically-achieving-quantum-advantage/fulltext

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC23: Application Results

June 2, 2023

The ASC23 organizers put together a slate of fiendishly difficult applications for the students this year. The apps were a mix of traditional HPC packages, like WRF-Hydro and FVCOM, plus machine learning centric programs Read more…

Q&A with Marco Pistoia, an HPCwire Person to Watch in 2023

June 2, 2023

HPCwire Person to Watch Marco Pistoia wears a lot of hats at JPMorgan Chase & Co.: managing director, distinguished engineer, head of global technology applied research and head of quantum computing. That work with J Read more…

HPC Career Notes: June 2023 Edition

June 1, 2023

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

Intersect360: HPC Market ‘Returning to Stable Growth’

June 1, 2023

The folks at Intersect360 Research released their latest report and market update just ahead of ISC 2023, which was held in Hamburg, Germany, last week. The headline: “We’re returning to stable growth,” per Addison Read more…

Lori Diachin to Lead the Exascale Computing Project as It Nears Final Milestones

May 31, 2023

The end goal is in sight for the multi-institutional Exascale Computing Project (ECP), which launched in 2016 with a mandate from the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) to achi Read more…

AWS Solution Channel

Shutterstock 1493175377

Introducing GPU health checks in AWS ParallelCluster 3.6

GPU failures are relatively rare but when they do occur, they can have severe consequences for HPC and deep learning tasks. For example, they can disrupt long-running simulations and distributed training jobs. Read more…

 

Shutterstock 1415788655

New Thoughts on Leveraging Cloud for Advanced AI

Artificial intelligence (AI) is becoming critical to many operations within companies. As the use and sophistication of AI grow, there is a new focus on the infrastructure requirements to produce results fast and efficiently. Read more…

ASC23: LINPACK Results

May 30, 2023

With ISC23 now in the rearview mirror, let’s get back to the results from the ASC23 Student Cluster Competition. In our last articles, we looked at the competition and applications, plus introduced the teams, now it’ Read more…

ASC23: Application Results

June 2, 2023

The ASC23 organizers put together a slate of fiendishly difficult applications for the students this year. The apps were a mix of traditional HPC packages, like Read more…

Intersect360: HPC Market ‘Returning to Stable Growth’

June 1, 2023

The folks at Intersect360 Research released their latest report and market update just ahead of ISC 2023, which was held in Hamburg, Germany, last week. The hea Read more…

Lori Diachin to Lead the Exascale Computing Project as It Nears Final Milestones

May 31, 2023

The end goal is in sight for the multi-institutional Exascale Computing Project (ECP), which launched in 2016 with a mandate from the Department of Energy (DOE) Read more…

At ISC, Sustainable Computing Leaders Discuss HPC’s Energy Crossroads

May 30, 2023

In the wake of SC22 last year, HPCwire wrote that “the conference’s eyes had shifted to carbon emissions and energy intensity” rather than the historical Read more…

Nvidia Announces Four Supercomputers, with Two in Taiwan

May 29, 2023

At the Computex event in Taipei this week, Nvidia announced four new systems equipped with its Grace- and Hopper-generation hardware, including two in Taiwan. T Read more…

Nvidia to Offer a ‘1 Exaflops’ AI Supercomputer with 256 Grace Hopper Superchips

May 28, 2023

We in HPC sometimes roll our eyes at the term “AI supercomputer,” but a new system from Nvidia might live up to the moniker: the DGX GH200 AI supercomputer. Read more…

Closing ISC Keynote by Sterling and Suarez Looks Backward and Forward

May 25, 2023

ISC’s closing keynote this year was given jointly by a pair of distinguished HPC leaders, Thomas Sterling of Indiana University and Estela Suarez of Jülich S Read more…

The Grand Challenge of Simulating Nuclear Fusion: An Overview with UKAEA’s Rob Akers

May 25, 2023

As HPC and AI continue to rapidly advance, the alluring vision of nuclear fusion and its endless zero-carbon, low-radioactivity energy is the sparkle in many a Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

ISC 2023 Booth Videos

Cornelis Networks @ ISC23
Dell Technologies @ ISC23
Intel @ ISC23
Lenovo @ ISC23
ISC23 Playlist
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire