Google’s New AI-Focused ‘A3’ Supercomputer Has 26,000 GPUs

By Agam Shah

May 10, 2023

Cloud providers are building armies of GPUs to provide more AI firepower. At its annual Google I/O developer conference today, Google announced an AI supercomputer with 26,000 GPUs. The Compute Engine A3 supercomputer is one more proof point that it is throwing more resources in an aggressive counteroffensive in its battle for AI supremacy with Microsoft.

An Nvidia DGX H100 system baseboard with 8 H100 Hopper GPUs, shown by Nvidia CEO Jensen Huang in April

The supercomputer has about 26,000 Nvidia H100 Hopper GPUs. For reference, the world’s fastest public supercomputer, Frontier, has 37,000 AMD Instinct 250X GPUs.

“For our largest customers, we can build A3 supercomputers up to 26,000 GPUs in a single cluster and are working to build multiple clusters in our largest regions,” a Google spokeswoman said in an email, adding that “not all of our locations will be scaled to this large size.”

The system was announced at the Google I/O conference, which is being held in Mountain View, California. The developer conference has emerged as a showcase for many of Google’s AI software and hardware capabilities. Google has accelerated its AI development after Microsoft put technologies from OpenAI into Bing search and office productivity applications.

The supercomputer is targeted at customers looking to train large-language models. Google announced the accompanying A3 virtual machine instances for companies looking to use the supercomputer. Many cloud providers are now deploying H100 GPUs, and Nvidia in March launched its own DGX cloud service, which is expensive compared to renting previous generation A100 GPUs.

Google said that the A3 supercomputer is a significant upgrade over compute resources provided by existing A2 virtual machines with Nvidia’s A100 GPUs. Google is pooling all A3 computing instances, which are spread geographically, into a single supercomputer.

“The A3 supercomputer’s scale provides up to 26 exaflops of AI performance, which considerably improves the time and costs for training large ML models,” said Google’s Roy Kim, a director, and Chris Kleban, a product manager, in a blog entry.

The exaflops performance metric, which is used by companies to estimate the raw performance of an AI computer, is still viewed with a pinch of salt by critics. In Google’s case, the flops are meted out in training-targeted TF32 Tensor Core performance, which gets you to “exaflops” about 30x faster than the double-precision (FP64) floating point math that most classic HPC applications still require.

The number of GPUs has become an important calling card for cloud providers to promote their AI computing services. Microsoft’s AI supercomputer in Azure, built in collaboration with OpenAI, has 285,000 CPU cores and 10,000 GPUs. Microsoft has also announced its next-generation AI supercomputer with more GPUs. Oracle’s cloud service provides access to clusters of 512 GPUs, and is working on new technology to boost the speed at which GPUs communicate.

Google TPU v4. Image courtesy of Google.

Google has been hyping up its TPU v4 artificial intelligence chips, which are being used to run internal artificial intelligence applications with LLMs, such as Google’s Bard offering. Google’s AI subsidiary, DeepMind, has said that the fast TPUs are guiding AI development for general and scientific applications.

By comparison, Google’s A3 supercomputer is versatile, and can be tuned to a wide range of AI applications and LLMs. “Given the high demands of these workloads, a one-size-fits-all approach is not enough – you need infrastructure that’s purpose-built for AI,” said Kim and Kleban in the blog entry.

As much as Google loves its TPUs, Nvidia’s GPUs have become a necessity for cloud providers given customers are writing AI applications in CUDA, which is Nvidia’s proprietary parallel programming model. The software toolkit generates the fastest results based on acceleration provided by H100’s specialized AI and graphics cores.

Customers can run AI applications via the A3 VMs, and use Google’s AI development and management services available via Vertex AI, Google Kubernetes Engine, and Google Compute Engine services.

Companies can use GPUs on the A3 supercomputer as one-time rentals to train large-scale models in conjunction with large-language models. The model is then updated – without the need for retraining from scratch – with new data fed into the model.

Google’s A3 supercomputer is a mish-mash of various technologies to boost GPU-to-GPU communications and network performance. The A3 virtual machines are based on Intel’s fourth-generation Xeon chips (codenamed Sapphire Rapids), which come packaged with the H100 GPUs. It is not clear if the virtual CPUs in the VM will support inferencing accelerators built into in the Sapphire Rapids chips. The VMs are accompanied with DDR5 memory.

Training models on Nvidia H100 are faster and cheaper than its previous-generation A100 GPUs, which are widely available in the cloud. A study done by AI services company MosaicML found H100 “to be 30% more cost-effective and 3x faster than the NVIDIA A100” on its seven-billion parameter MosaicGPT large language model.

The H100 can also inference, though it may be considered overkill, considering the amount of processing power provided by H100. Google Cloud offers Nvidia’s L4 GPUs for inferencing, and Intel has inferencing accelerators in its Sapphire Rapids CPUs.

Nvidia’s L4 GPU. Image courtesy of Nvidia.

“A3 VMs are also a strong fit for inference workloads, seeing up to a 30x inference performance boost when compared to our A2 VM’s A100 GPUs,” Google’s Kim and Kleban said.

The A3 VMs are the first to connect GPU instances via the infrastructure processing unit called Mount Evans, which was developed jointly by Google and Intel. The IPU allows the A3 virtual machines to offload networking, storage management and security features, which were traditionally done on virtual CPUs. The IPU allows data transfers at 200Gbps.

“A3 is the first GPU instance to use our custom-designed 200Gbps IPUs, with GPU-to-GPU data transfers bypassing the CPU host and flowing over separate interfaces from other VM networks and data traffic. This enables up to 10x more network bandwidth compared to our A2 VMs, with low tail latencies and high bandwidth stability,” the Google executives said in a blog entry.

The IPU’s throughput may be soon challenged by Microsoft, whose upcoming AI supercomputer with Nvidia’s H100 GPUs will have the chipmaker’s Quantum-2 400Gbps networking capabilities. Microsoft has not revealed the number of H100 GPUs in its next-generation AI supercomputer.

The A3 supercomputer is built on a spine derived from the company’s Jupiter datacenter networking fabric, which connects the geographically diverse GPU clusters via optical links.

“For almost every workload structure, we achieve workload bandwidth that is indistinguishable from more expensive off-the-shelf non-blocking network fabrics,” Google said.

Google also shared that the A3 supercomputer will have eight H100 GPU blocks that are interconnected using Nvidia’s proprietary switching and chip interconnect technology. The GPUs will be connected via the NVSwitch and the NVLink interconnect, which communicate at speeds of roughly 3.6TBps. The same speed is offered by Azure on its AI supercomputer, and both companies deploy Nvidia’s board designs.

“Each server uses NVLink and NVSwitch inside the server to inter-connect the eight GPUs together. For GPU servers to communicate to each other, we use multiple IPUs on our Jupiter DC network fabrics,” a Google spokeswoman said.

The setup is somewhat similar to Nvidia’s DGX Superpod, which spans 127 DGX nodes, each equipped with eight H100 GPUs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire