Appetizing Quantum Bits: Five Papers Looking at Noise, GANs, VQAs, Qubit Testing

By John Russell

July 12, 2023

What’s good way to characterize dynamic noise in QPUs? Why should CMOS and single electron spin qubits be a preferred approach? Can variational quantum algorithms (VQA) truly deliver speed-up over classical systems? Can Hybrid VQAs improve quantum machine learning? What about implementing generative adversarial networks (GANs) on today’s NISQ machines?

Here are five papers from the Quantum Science Center (ORNL), Intel, the University of Science and Technology of China, the Quantum Information Sciences Section (ORNL) and University College Dublin that tackle the topics above. All were posted to arXiv in July. The steady flow of papers tackling quantum computing, even through the summer, is impressive.

QSC Works to Accurately Predict Noise Boundary

Travis Humble, director of the Quantum Science Center at ORNL, and his colleague Samudra Dasgupta, report work on a stability metric that includes dynamic noise as well as easier-to-characterize stationary noises. Their paper – Reliable Devices Yield Stable Quantum Computations – underscores the need to account for dynamic noises when setting expectations.

Here the abstract:

“Stable quantum computation requires noisy results to remain bounded even in the presence of noise fluctuations. Yet non-stationary noise processes lead to drift in the varying characteristics of a quantum device that can greatly influence the circuit outcomes. Here we address how temporal and spatial variations in noise relate device reliability to quantum computing stability. First, our approach quantifies the differences in statistical distributions of characterization metrics collected at different times and locations using Hellinger distance. We then validate an analytical bound that relates this distance directly to the stability of a computed expectation value. Our demonstration uses numerical simulations with models informed by the transmon device from IBM called washington. We find that the stability metric is consistently bounded from above by the corresponding Hellinger distance, which can be cast as a specified tolerance level. These results underscore the significance of reliable quantum computing devices and the impact for stable quantum computation.”

Intel Demonstrates High-Volume On-Wafer QPU Testing

Intel has long argued its CMOS manufacturing expertise and spin qubit technology is best suited for scaling system size to the millions of qubits need to achieve fault tolerant quantum computing. In this paper – Probing single electrons across 300 mm spin qubit wafers – written by Intel researchers including James Clarke, director of quantum hardware, Intel, they look at a piece of the manufacturing puzzle – qubit probing – for build large-scale quantum computers.

Here’s the abstract:

“Building a fault-tolerant quantum computer will require vast numbers of physical qubits. For qubit technologies based on solid state electronic devices, integrating millions of qubits in a single processor will require device fabrication to reach a scale comparable to that of the modern CMOS industry. Equally importantly, the scale of cryogenic device testing must keep pace to enable efficient device screening and to improve statistical metrics like qubit yield and process variation. Spin qubits have shown impressive control fidelities but have historically been challenged by yield and process variation. In this work, we present a testing process using a cryogenic 300 mm wafer prober to collect high-volume data on the performance of industry-manufactured spin qubit devices at 1.6 K.

“This testing method provides fast feedback to enable optimization of the CMOS compatible fabrication process, leading to high yield and low process variation. Using this system, we automate measurements of the operating point of spin qubits and probe the transitions of single electrons across full wafers. We analyze the random variation in single-electron operating voltages and find that this fabrication process leads to low levels of disorder at the 300mm scale. Together these results demonstrate the advances that can be achieved through the application of CMOS industry techniques to the fabrication and measurement of spin qubits.”

VQA Performance Still Lags Classical

Huan-Yu Liu and his colleagues from University of Science and Technology of China argue that VQAs, while promising, can’t currently outperform classical systems on low-depth quantum neural networks. They cite wall clock times of more than a year in their paper – Can Variational Quantum Algorithms Demonstrate Quantum Advantages? Time Really Matters.

That said, the researchers emphasize, “We do not want to deny the potential of VQAs and the NISQ algorithms. In view of VQAs, optimizations need to be made to reduce the time cost, examples like more efficient sampling strategies and more parameter-saving ansatzes. And one of our future works is to design backpropagation-type algorithms for efficiently training QNNs.”

Here’s the abstract:

“Applying low-depth quantum neural networks (QNNs), variational quantum algorithms (VQAs) are both promising and challenging in the noisy intermediate-scale quantum (NISQ) era: Despite its remarkable progress, criticisms on the efficiency and feasibility issues never stopped. However, whether VQAs can demonstrate quantum advantages is still undetermined till now, which will be investigated in this paper. First, we will prove that there exists a dependency between the parameter number and the gradient-evaluation cost when training QNNs. Noticing there is no such direct dependency when training classical neural networks with the backpropagation algorithm, we argue that such a dependency limits the scalability of VQAs.

“Second, we estimate the time for running VQAs in ideal cases, i.e., without considering realistic limitations like noise and reachability. We will show that the ideal time cost easily reaches the order of a 1-year wall time. Third, by comparing with the time cost using classical simulation of quantum circuits, we will show that VQAs can only outperform the classical simulation case when the time cost reaches the scaling of 100 -102 years. Finally, based on the above results, we argue that it would be difficult for VQAs to outperform classical cases in view of time scaling, and therefore, demonstrate quantum advantages, with the current workflow. Since VQAs as well as quantum computing are developing rapidly, this work does not aim to deny the potential of VQAs. The analysis in this paper provides directions for optimizing VQAs, and in the long run, seeking more natural hybrid quantum-classical algorithms would be meaningful.”

Hybrid VQA Enhances Quantum Machine Learning

Researchers Joseph Wang and Ryan Bennink of the Quantum Information Sciences Section, ORNL, look at VQAs from a different perspective. They report in their paper – Variational quantum regression algorithm with encoded data structure – developing a hybrid quantum regression algorithm to improve VQA performance machine learning.

They write, “We propose a method to solve the linear regression problem using variational quantum circuits whose parameters encode the regression coefficients. The best regression coefficients are found by classical optimization with respect to a regularized cost function that furthermore helps to find the subset of features that are most important.”

Here’s their abstract:

“Variational quantum algorithms (VQAs) prevail to solve practical problems such as combinatorial optimization, quantum chemistry simulation, quantum machine learning, and quantum error correction on noisy quantum computers. For variational quantum machine learning, a variational algorithm with model interpretability built into the algorithm is yet to be exploited. In this paper, we construct a quantum regression algorithm and identify the direct relation of variational parameters to learned regression coefficients, while employing a circuit that directly encodes the data in quantum amplitudes reflecting the structure of the classical data table. The algorithm is particularly suitable for well-connected qubits. With compressed encoding and digital-analog gate operation, the run time complexity is logarithmically more advantageous than that for digital 2-local gate native hardware with the number of data entries encoded, a decent improvement in noisy intermediate-scale quantum computers and a minor improvement for large-scale quantum computing

“Our suggested method of compressed binary encoding offers a remarkable reduction in the number of physical qubits needed when compared to the traditional one-hot-encoding technique with the same input data. The algorithm inherently performs linear regression but can also be used easily for nonlinear regression by building nonlinear features into the training data. In terms of measured cost function which distinguishes a good model from a poor one for model training, it will be effective only when the number of features is much less than the number of records for the encoded data structure to be observable. To echo this finding and mitigate hardware noise in practice, the ensemble model training from the quantum regression model learning with important feature selection from regularization is incorporated and illustrated numerically.”

Quantum GAN Improved with a Classical Component

Generative adversarial networks have become key components for a wide variety of applications. Researchers Albha O’Dwyer Boyle and Reza Nikandish of University College, Dublin, have reported developing a hybrid classical-quantum approach to implementing GAN on NISQ devices that improves performance.

In their paper – A Hybrid Quantum-Classical Generative Adversarial Network for Near-Term Quantum Processors – they write, “The developed hybrid quantum-classical GAN is trained successfully using uniform and nonuniform data distributions. Using the nonuniform distribution for training data, the mode collapse failure, which GANs are prone to, can be mitigated. The proposed approach for the realization of hybrid quantum-classical GAN can open up a research direction for the implementation of more advanced GANs on the near-term quantum processors.”

Here’s the abstract:

“In this article, we present a hybrid quantum classical generative adversarial network (GAN) for near-term quantum processors. The hybrid GAN comprises a generator and a discriminator quantum neural network (QNN). The generator network is realized using an angle encoding quantum circuit and a variational quantum ansatz. The discriminator network is realized using multi-stage trainable encoding quantum circuits. A modular design approach is proposed for the QNNs which enables control on their depth to compromise between accuracy and circuit complexity. Gradient of the loss functions for the generator and discriminator networks are derived using the same quantum circuits used for their implementation. This prevents the need for extra quantum circuits or auxiliary qubits.

“The quantum simulations are performed using the IBM’s Qiskit open-source software development kit (SDK), while the training of the hybrid quantum-classical GAN is conducted using the mini-batch stochastic gradient descent (SGD) optimization on a classic computer. The hybrid quantum-classical GAN is implemented using a two-qubit system with different discriminator network structures. The hybrid GAN realized using a five-stage discriminator network, comprises 63 quantum gates and 31 trainable parameters, and achieves the Kullback-Leibler (KL) and the Jensen–Shannon (JS) divergence scores of 0.39 and 4.16, respectively, for similarity between the real and generated data distributions.”

Links to papers cited:

Reliable Devices Yield Stable Quantum Computations, https://arxiv.org/abs/2307.05381

Probing single electrons across 300 mm spin qubit wafers, https://arxiv.org/abs/2307.04812

Can Variational Quantum Algorithms Demonstrate Quantum Advantages? Time Really Matters, https://arxiv.org/abs/2307.04089

Variational quantum regression algorithm with encoded data structure, https://arxiv.org/abs/2307.03334

A Hybrid Quantum-Classical Generative Adversarial Network for Near-Term Quantum Processors, https://arxiv.org/abs/2307.03269

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The Annual SCinet Mandala

November 30, 2023

Perhaps you have seen images of Tibetan Buddhists creating beautiful and intricate images with colored sand. These sand mandalas can take weeks to create, only to be ritualistically dismantled when the image is finished. Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Reuters’ reported earlier this week that Alibaba “cut a Read more…

SC23: The Ethics of Supercomputing

November 29, 2023

Why should HPC practitioners care about ethics? And, what are our ethics in HPC? These questions were central to a lively discussion at the SC23 Birds-of-a-Feather (BoF) session: With Great Power Comes Great Responsib Read more…

Grace Hopper’s Big Debut in AWS Cloud While Graviton4 Launches

November 29, 2023

Editors Note: Additional Coverage of the AWS-Nvidia 65 Exaflop ‘Ultra-Cluster’ and Graviton4 can be found on our sister site Datanami. Amazon Web Services will soon be home to a new Nvidia-built supercomputer that Read more…

Give a Little (on Tuesday), Get a Lot

November 28, 2023

HPC is built on open source. While building HPC systems with "open plumbing" has enormous advantages, there can also be some challenges. As illustrated in the classic XKCD comic, the entire dependency tree of many usefu Read more…

AWS Solution Channel

Deploying AI/ML at the Edge with Omniflow’s Sustainable Smart Lamppost, NVIDIA, and AWS

Imagine a world where a lamppost does more than just illuminate streets; it actively contributes to a smarter, safer, and more sustainable community. Using Amazon Web Services (AWS) and NVIDIA technologies, Omniflow is turning this vision into a reality. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

re:Invent 2023: AWS Talks a Little Quantum, Showcases Error Correction Progress

November 28, 2023

Quantum computing held sway in the last few minutes of AWS senior vice president Peter DeSantis’ keynote yesterday at the AWS re:Invent 2023 conference, being held in Las Vegas this week. While scarce on details, DeSan Read more…

The Annual SCinet Mandala

November 30, 2023

Perhaps you have seen images of Tibetan Buddhists creating beautiful and intricate images with colored sand. These sand mandalas can take weeks to create, only Read more…

SC23: The Ethics of Supercomputing

November 29, 2023

Why should HPC practitioners care about ethics? And, what are our ethics in HPC? These questions were central to a lively discussion at the SC23 Birds-of-a-Fe Read more…

Grace Hopper’s Big Debut in AWS Cloud While Graviton4 Launches

November 29, 2023

Editors Note: Additional Coverage of the AWS-Nvidia 65 Exaflop ‘Ultra-Cluster’ and Graviton4 can be found on our sister site Datanami. Amazon Web Service Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

SCREAM wins Gordon Bell Climate Prize at SC23

November 21, 2023

The first Gordon Bell Prize for Climate Modeling was presented at SC23 in Denver. The award went to a team led by Sandia National Laboratories that had develope Read more…

SC23 BOF: Inclusivity Progress and Challenges

November 21, 2023

New to SC23 was a series of talks on Inclusivity topics. Sponsored by the Inclusivity Committee and open to all conference attendees, these 90-minute birds-of-a Read more…

Supercomputing 2023: Odds and Ends from the Show

November 20, 2023

This year's fantastic Supercomputing 2023 was back in full form. Attendees seemed to be glad that the show was back in Denver, which was a preferred destination Read more…

Material Simulation with Quantum Accuracy Wins 2023 ACM Gordon Bell Prize

November 20, 2023

Accurately calculating interactions among electrons has been a significant obstacle to reliable material exploration and design through computer modeling. Recen Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

SC23 Booth Videos

AMD @ SC23
AWS @ SC23
Altair @ SC23
CoolIT @ SC23
Cornelis Networks @ SC23
CoreHive @ SC23
DDC @ SC23
HPE @ SC23 with Justin Hotard
HPE @ SC23 with Trish Damkroger
Intel @ SC23
Intelligent Light @ SC23
Lenovo @ SC23
Penguin Solutions @ SC23
QCT Intel @ SC23
Tyan AMD @ SC23
Tyan Intel @ SC23
HPCwire LIVE from SC23 Playlist

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire