Researchers Advance Topological Superconductors for Quantum Computing

By Dawn Levy

September 21, 2023

Editor’s note: As the field of quantum computing advances, the Quantum Science Center (QSC) at Oak Ridge National Laboratory (ORNL) finds itself at the forefront of cutting-edge research. This recent article by Dawn Levy offers a deep dive into the lab’s ongoing efforts to realize the potential of controllable topological qubits, a pivotal game-changer for error-correction in quantum systems. Under the guidance of ORNL’s Travis Humble, the center is aiming to develop new materials and hardware to strengthen the foundation of quantum computing.

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energy’s Oak Ridge National Laboratory sought to create a new material system.

“We are pursuing a new route to create quantum computers using novel materials,” said ORNL materials scientist Robert Moore, who co-led a study published in Advanced Materials with ORNL colleague Matthew Brahlek, who is also a materials scientist.

They coupled a superconductor, which offers no resistance to electrical current, with a topological insulator, which has electrically conductive surfaces but an insulating interior. The result is an atomically sharp interface between crystalline thin films with different symmetric arrangements of atoms. The novel interface that they designed and engineered may give rise to exotic physics and host a unique quantum building block with potential as a superior qubit.

“The idea is to make qubits with materials that have more robust quantum mechanical properties,” Moore said. “What is important is that we have learned how to control the electronic structure of the topological insulator and the superconductor independently, so that we can tailor the electronic structure at that interface. This had never been done.”

Controlling the electronic structure on both sides of an interface may create something called Majorana particles inside the material. “In nature, we have particles and antiparticles, for example electrons and positrons, which annihilate each other when they come in contact. A Majorana particle is its own antiparticle,” Moore said. In 1937 Ettore Majorana predicted the existence of these exotic particles, whose existence remains to be proven.

As part of the Quantum Science Center headquartered at ORNL, Robert Moore probes the interface between a topological insulator and a superconductor with spin- and angle-resolved photoemission spectroscopy. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

In 2008, theorical physicists Liang Fu and Charlie Kane of the University of Pennsylvania proposed that creating a novel interface between a topological insulator and a superconductor would generate topological superconductivity, a new phase of matter predicted to host Majorana particles.

“If you have a pair of Majorana particles and move them around each other, there is a memory of this motion. They always know each other’s location,” Moore said. “This process could be used to encode quantum information and compute in new ways.”

However, realization of a new phase of matter that can host Majorana particles depends on finding the right material. Such an achievement takes a diverse team of experts.

Travis Humble, director of the Quantum Science Center

When Moore came to ORNL in 2019, he brought a new expertise in angle-resolved photoemission spectroscopy, or ARPES, a technique for probing the electronic structure of materials. ARPES is based on the photoelectric effect, for which Albert Einstein was awarded the 1921 Nobel Prize in physics. It focuses a light source on a sample and characterizes electrons ejected from the material surface when the electrons absorb energy from the photons. The technique helps scientists understand how electrons behave inside a material.

This strategic investment in ARPES expertise helped ORNL win its bid to lead one of five DOE National Quantum Information Science Research Centers, the Quantum Science Center, which launched in 2020. Led by ORNL’s Travis Humble, the QSC aims to realize quantum computing and sensing applications by developing hardware and algorithms and discovering novel materials. Moore and his colleagues focus on topological materials for hardware development. Since April, Moore has also co-directed ORNL’s Interconnected Science Ecosystem, or INTERSECT, with Ben Mintz to develop laboratories of the future — smart, autonomously controlled processes and experiments with the potential to revolutionize research outcomes.

ORNL’s Matt Brahlek used molecular beam epitaxy to grow a thin film interface of topological insulating and superconducting materials, atom by atom. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Brahlek, who joined ORNL in 2018 and recently received a DOE Early Career Research award, is an expert in precision synthesis of materials. To make superclean interfaces between a superconductor and topological insulator, he used molecular beam epitaxy, a method industry uses for large-scale fabrication of semiconductors for electronic devices.

With help from former postdoctoral fellow Tyler Smith, Brahlek performed the synthesis under ultrahigh vacuum. “Inside the chamber, there are fewer molecules bouncing around than in outer space. It is a really clean environment. It must be well controlled,” Brahlek said. “You start with little furnaces, each containing one element. Each furnace heats until the element inside starts to sublimate, or pass from solid to vapor state. This creates beams of elements. They all converge on a crystal substrate and adhere.”

He co-deposited iron, selenium and tellurium to make a superconductor that was one atomic layer thick. “If you can get the conditions exactly right, the deposited atoms will chemically bond and assemble, atomic layer by atomic layer, into a crystalline thin film,” Brahlek said.

“A key to getting the results was understanding how to combine bismuth telluride with iron selenide telluride at an atomic interface to gain the desired electronic behavior,” Brahlek said.

That accomplishment was tricky because the superconductor’s lattice of iron, selenium and tellurium comprises ordered square cells, whereas the topological insulator is a network of adjoining triangles. “We’re putting something square on something triangular, but, surprisingly, the crystalline film grows nicely,” Brahlek said. “This accomplishment requires understanding the physics and chemistry that happen at these interfaces, which is critical to combining topological and superconducting properties in a single platform.”

From left, Matthew Brahlek, Robert Moore and Qiangsheng Lu develop topological superconducting materials for quantum computing applications in support of the Quantum Science Center headquartered at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

That platform is the topological superconductor. To understand its topological properties, Moore used spin-resolved ARPES, with help from ORNL postdoctoral fellow Qiangsheng Lu, to probe quantum spin-dependent electronic structure at the interface of the topological insulator and the superconductor. Meanwhile, to confirm its superconducting behavior, Brahlek and former ORNL postdoctoral fellows Yun-Yi Pai and Michael Chilcote assisted with measurements of electrical resistance.

“We were able to see how the different electronic structures were interacting at the interface, and we were able to control those interactions to ensure all the ingredients for topological superconductivity exist,” Moore said. “We found that the desired topological properties only exist for specific selenium doping ranges. This was a surprise that is crucial for making qubits.”

Meanwhile, Hoyeon Jeon and An-Ping Li at ORNL’s Center for Nanophase Materials Sciences used scanning tunneling microscopy to characterize disorder in the materials. ORNL staff scientists Hu Miao and Satoshi Okamoto provided experimental and theoretical guidance throughout the study.

Crucial challenges remain. “We need to improve and better understand the materials at the atomic level, which is critical to confirming and using Majorana particles for applications,” Moore said. “The next step will be exploring possible Majorana particles using a newly installed ultralow-temperature scanning tunneling microscope instrument at CNMS.”

He added, “Achieving a qubit based on Majorana particles is one of the ultimate goals of the Quantum Science Center. The Majorana particle in materials is such an exotic state. Proving that it exists will require both building and testing a qubit-like device. It is an odd way to think about it, but you have to make a qubit to prove it is a qubit. We now know how to control the materials to the level required to make this happen.”

Connecting wires to the interface of the topological insulator and superconductor enables probing of novel electronic properties. Researchers aim for qubits based on theorized Majorana particles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

The title of the paper is “Monolayer Superconductivity and Tunable Topological Electronic Structure at the Fe(Te,Se)/Bi2Te3 Interface.”

The work’s funding came from the DOE Office of Science — through the QSC, a DOE National Quantum Information Science Research Center, and the Materials Sciences and Engineering Division — along with the National Science Foundation, the Army Research Office and the Gordon and Betty Moore Foundation. The research used resources at CNMS, a DOE Office of Science user facility at ORNL.

UT-Battelle manages ORNL for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Qubit Roundup – Quantum Zoo Grows, Rigetti’s QPU Play, Google’s New Algorithm, QuEra’s EC Advance, and More

December 11, 2023

While the IBM Quantum Summit and the QC Ware’s Q2B Silicon Valley conference dominated last week’s news flow, there was no shortage of other quantum news emerging. Here’s brief recap of highlights. Let’s start Read more…

Inside AWS’s Plans to Make S3 Faster and Better

December 10, 2023

As far as big data storage goes, Amazon S3 has won the war. Even among storage vendors whose initials are not A.W.S., S3 is the defacto standard for storing lots of data. But AWS isn’t resting on its laurels with S3, a Read more…

Quantum Market, Though Small, will Grow 22% and Hit $1.5B in 2026

December 7, 2023

Few markets as small as the quantum information sciences market generate as much lively discussion. Hyperion Research pegged the worldwide quantum market at $848 million for 2023 and expects it to reach ~$1.5 billion in Read more…

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed its new Instinct MI300X GPU is the fastest AI chip in the worl Read more…

Finding Opportunity in the High-Growth “AI Market” 

December 6, 2023

 “What’s the size of the AI market?” It’s a totally normal question for anyone to ask me. After all, I’m an analyst, and my company, Intersect360 Research, specializes in scalable, high-performance datacenter Read more…

AWS Solution Channel

Shutterstock 2030529413

Reezocar Rethinks Car Buying Using Computer Vision and ML on AWS

Overview

Every car that finds its way to a landfill marks another dent in the fight for a sustainable future. Reezocar, an online hub for buying and selling used cars, has a mission to change this. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

Imagine a Beowulf Cluster of SuperNODEs …
(They did)

December 6, 2023

Clustering resources for faster performance is not new. In the early days of clustering, the Beowulf project demonstrated that high performance was achievable from commodity hardware. These days, the "Beowulf cluster mem Read more…

Inside AWS’s Plans to Make S3 Faster and Better

December 10, 2023

As far as big data storage goes, Amazon S3 has won the war. Even among storage vendors whose initials are not A.W.S., S3 is the defacto standard for storing lot Read more…

Quantum Market, Though Small, will Grow 22% and Hit $1.5B in 2026

December 7, 2023

Few markets as small as the quantum information sciences market generate as much lively discussion. Hyperion Research pegged the worldwide quantum market at $84 Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Finding Opportunity in the High-Growth “AI Market” 

December 6, 2023

 “What’s the size of the AI market?” It’s a totally normal question for anyone to ask me. After all, I’m an analyst, and my company, Intersect360 Res Read more…

Imagine a Beowulf Cluster of SuperNODEs …
(They did)

December 6, 2023

Clustering resources for faster performance is not new. In the early days of clustering, the Beowulf project demonstrated that high performance was achievable f Read more…

The IBM-Meta AI Alliance Promotes Safe and Open AI Progress

December 5, 2023

IBM and Meta have co-launched a massive industry-academic-government alliance to shepherd AI development. The new group has united under the AI Alliance banner Read more…

Shutterstock 1336284338

ChatGPT Friendly Programming Languages
(hello-world.llm)

December 4, 2023

 Using OpenAI's ChatGPT to write code is an alluring goal. Describing "what to" solve, but not "how to solve" would be a huge breakthrough in computer programm Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

SC23 Booth Videos

Achronix @ SC23
AMD @ SC23
AWS @ SC23
Altair @ SC23
CoolIT @ SC23
Cornelis Networks @ SC23
CoreHive @ SC23
DDC @ SC23
HPE @ SC23 with Justin Hotard
HPE @ SC23 with Trish Damkroger
Intel @ SC23
Intelligent Light @ SC23
Lenovo @ SC23
Penguin Solutions @ SC23
QCT Intel @ SC23
Tyan AMD @ SC23
Tyan Intel @ SC23
HPCwire LIVE from SC23 Playlist

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire