AWS Survey Showcases Quantum Algorithms and Applications

By John Russell

October 5, 2023

Somewhat quietly, while quantum hardware developers have been steadily improving today’s early quantum computers (scale and error correction), developers of quantum algorithms and applications have also been accelerating efforts. Today, AWS released a new study – Quantum algorithms: A survey of applications and end-to-end complexities – intended to help early quantum computing users.

This is a nice resource to add to the growing basket of tools available to early explorers of quantum computing. It’s also a good indication of the steady quantum algorithm/application development. Increasingly, it seems that a considerable number of quantum algorithms and applications will be available for use on NISQ (noisy intermediate-scale quantum) devices to deliver early quantum advantage (QA) and then eventually on fault tolerant quantum computers when they arrive.

The timetable for reaching QA is, of course, debated. Both IBM and IonQ made pitches at last week’s HPC & AI on Wall Street conference that 24-36 months seems a likely target for reaching early QA on NISQ devices. We’ll see. Full fault-tolerant quantum computers are not expected for several years.

“The primary focus of the survey is quantum algorithms with the greatest potential to generate customer value in the long term, once fault-tolerant quantum computers are available – however, it also comments on the most relevant near-term noisy intermediate-scale quantum (NISQ) algorithms, where appropriate,” write Sam McArdle and Alexander Dalzell, AWS quantum researchers, in a blog today. AWS has also posted a preprint paper on arXiv with the full survey.

The survey is written in a wiki-like fashion that encourages modular treatment of each step shown above. The survey document is split into the following parts:

  • Areas of application including quantum chemistry, several subfields of physics, optimization, cryptanalysis, solving differential equations, finance, and machine learning. These sections detail the high-level goals of customers in these areas, as well as specific computational tasks that may be amenable to quantum computation. For each area, the survey identifies the actual end-to-end problems solved, discusses which algorithmic primitives are used to solve the problems, and collects the overall complexity of the solutions. It also discusses state-of-the-art classical solutions for the same tasks, which is important since quantum computers can provide value only if they are superior to these classical solutions.
  • Algorithmic primitives including quantum linear algebra, Hamiltonian simulation, quantum linear system solvers, amplitude amplification, and phase estimation, among others. These primitives are the building blocks of quantum algorithms. They can be combined in a modular, abstracted fashion, but there are often caveats involved with using certain primitives that a designer should be aware of. The survey describes how the primitives work, quantifies their resource requirements, and identifies these key nuances.
  • Fault-tolerant quantum computation. Since the algorithms discussed in the survey generally cannot be successfully run on existing noisy intermediate-scale quantum devices, the survey works under the assumption that these algorithms will require a fault-tolerant implementation. Fault tolerance introduces significant overheads to the quantum computation. The survey reviews the theory and the leading proposals on how to implement algorithms in a fault-tolerant way, explaining how to compute the relevant overheads for a fully end-to-end resource analysis.

McArdle and Dalzell write, “When analyzing and optimizing quantum algorithms for a range of problems, we found that the most useful insights and pieces of knowledge appeared multiple times in different quantum algorithms and applications.”

“We decided to collect this information in a single location. We have found that the streamlined, modular structure of the survey has enabled us to quickly understand and analyze new quantum algorithms. We hope that by sharing this survey with the community, other researchers will be empowered to view quantum algorithms in an end-to-end fashion. Ultimately, we hope that this work can grow beyond the research of our own team, and become an important resource for the quantum computing community.”

Shown below is a figure from the blog on depicting over all algorithm/app development.

Figure 1: The structure of a complete quantum solution to a customer problem, for which an end-to-end resource estimate can be calculated. The survey provides technical details for each step, explaining how the most promising customer applications are converted into fault-tolerant quantum algorithms. Current hardware is not capable of implementing these algorithms, but this framework enables a prediction of the hardware requirements that will be necessary to do so. The survey includes standalone sections for each application and each algorithmic primitive, in addition to a section dedicated to fault-tolerant quantum computation. Note that this cycle may need to be run several times to fully accomplish the customer goal. [Attribution: “Antique abacus drawing” by The British Library is marked with CC0 1.0.]
McArdle and Dalzell also walk through a more specific example.

Here’s an excerpt:

“The two-dimensional Fermi–Hubbard model on lattice sites is parameterized by two numbers,  t and U, where  t is the strength of the kinetic contribution to the energy and  U is the strength of the “on-site” interaction between fermions occupying the same lattice site (each site can have at most two electrons). Background information on the Fermi–Hubbard model can be found in Section 1.1 of the survey [1].

“As described in that section, this customer use-case is tackled by the following workflow:

1. Define the computational task: The goal is to compute the ground state energy density in the thermodynamic limit, that is, to estimate E = (GSE)/N in the limit N  → ∞ to precision ε, where GSE denotes the ground-state energy. This is achieved by computing the energy density for increasingly large L × L lattices (N = 2L2), and performing an extrapolation.

2. Construct a high-level quantum algorithm that solves the computational task: The task can be solved by preparing an initial state with sufficiently high overlap with the ground state, and performing quantum phase estimation to measure the ground state energy. A deeper dive into the resource requirements of these steps is performed below, with help from other sections of the survey.

3. Fault-tolerant implementation: Sections 25–27 of the survey, which cover fault-tolerant quantum computation, provide rules of thumb that allow for a rough estimate of the resources needed to run the algorithm in a surface code architecture – a common choice of architecture which is compatible with a superconducting qubit hardware platform.

4. Processing the outcomes of the computation: We see from Figure 2 that we require on the order of 10 energy values for systems of size up to 20 × 20 sites (N = 800). An extrapolation is performed to determine the estimate for infinite system size. Together with the resource estimates determined in the previous steps, this will yield an estimate of the total cost for this problem.”

“These steps are depicted in Figure 3, where color-coding indicates which section of the survey contains the relevant information for each component.”

Figure 3: Example of how a fault-tolerant quantum computer could be used to accomplish the customer goal of understanding the physics of the Fermi–Hubbard model, enabling an end-to-end resource estimate. Each color corresponds to a topic covered in a certain section of the survey, noted at the bottom.

The bloggers recognize today’s QC shortcomings and make a pitch for using AWS Braket’s expanding portfolio of offerings.

“Quantum hardware is not yet capable of performing the fault-tolerant quantum algorithms discussed in this blog post or in the survey. While the field develops devices able to support quantum error correction, researchers and customers are exploring NISQ algorithms, which can run on hardware today, but are typically more difficult to study analytically since in most cases they are based on heuristics,” they write.

“With Amazon Braket, the quantum computing service of AWS, you can have on-demand access to a variety of different NISQ quantum computers to design and investigate near-term algorithmsresearch and develop error mitigation strategies, or run analog Hamiltonian simulations of physical spin systems and certain optimization problems. To get started, visit our webpage or explore the Amazon Braket example notebooks.”

Link to blog, https://aws.amazon.com/blogs/quantum-computing/constructing-end-to-end-quantum-algorithm/

Link to full paper, https://arxiv.org/pdf/2310.03011.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

SC23: The Ethics of Supercomputing

November 29, 2023

Why should HPC practitioners care about ethics? And, what are our ethics in HPC? These questions were central to a lively discussion at the SC23 Birds-of-a-Feather (BoF) session: With Great Power Comes Great Responsib Read more…

Grace Hopper’s Big Debut in AWS Cloud While Gravaton4 Launches

November 29, 2023

Editors Note: Additional Coverage of the AWS-Nvidia 65 Exaflop ‘Ultra-Cluster’ and Gravitron4 can be found on our sister site Datanami. Amazon Web Services will soon be home to a new Nvidia-built supercomputer tha Read more…

Give a Little (on Tuesday), Get a Lot

November 28, 2023

HPC is built on open source. While building HPC systems with "open plumbing" has enormous advantages, there can also be some challenges. As illustrated in the classic XKCD comic, the entire dependency tree of many usefu Read more…

re:Invent 2023: AWS Talks a Little Quantum, Showcases Error Correction Progress

November 28, 2023

Quantum computing held sway in the last few minutes of AWS senior vice president Peter DeSantis’ keynote yesterday at the AWS re:Invent 2023 conference, being held in Las Vegas this week. While scarce on details, DeSan Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this year. Without doubt, the quantum computing landscape remai Read more…

AWS Solution Channel

Deploying AI/ML at the Edge with Omniflow’s Sustainable Smart Lamppost, NVIDIA, and AWS

Imagine a world where a lamppost does more than just illuminate streets; it actively contributes to a smarter, safer, and more sustainable community. Using Amazon Web Services (AWS) and NVIDIA technologies, Omniflow is turning this vision into a reality. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

SC23 HPC Student Cluster Smackdown

November 21, 2023

Since 2007, the Student Cluster Competition (SCC) has provided an international multi-day contest for the best and brightest university HPC teams. This year, the in-person event was held at SC23 in Denver from November 1 Read more…

SC23: The Ethics of Supercomputing

November 29, 2023

Why should HPC practitioners care about ethics? And, what are our ethics in HPC? These questions were central to a lively discussion at the SC23 Birds-of-a-Fe Read more…

Grace Hopper’s Big Debut in AWS Cloud While Gravaton4 Launches

November 29, 2023

Editors Note: Additional Coverage of the AWS-Nvidia 65 Exaflop ‘Ultra-Cluster’ and Gravitron4 can be found on our sister site Datanami. Amazon Web Servic Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

SCREAM wins Gordon Bell Climate Prize at SC23

November 21, 2023

The first Gordon Bell Prize for Climate Modeling was presented at SC23 in Denver. The award went to a team led by Sandia National Laboratories that had develope Read more…

SC23 BOF: Inclusivity Progress and Challenges

November 21, 2023

New to SC23 was a series of talks on Inclusivity topics. Sponsored by the Inclusivity Committee and open to all conference attendees, these 90-minute birds-of-a Read more…

Supercomputing 2023: Odds and Ends from the Show

November 20, 2023

This year's fantastic Supercomputing 2023 was back in full form. Attendees seemed to be glad that the show was back in Denver, which was a preferred destination Read more…

Material Simulation with Quantum Accuracy Wins 2023 ACM Gordon Bell Prize

November 20, 2023

Accurately calculating interactions among electrons has been a significant obstacle to reliable material exploration and design through computer modeling. Recen Read more…

Shutterstock 1086444218

HPC Hardware Contracts: Backlash as Security Ignored in Performance Pursuit

November 16, 2023

The security of supercomputers has been grossly ignored in the pursuit of horsepower. Still, there is a growing realization that security is needed to prevent b Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

SC23 Booth Videos

AMD @ SC23
AWS @ SC23
Altair @ SC23
CoolIT @ SC23
Cornelis Networks @ SC23
CoreHive @ SC23
DDC @ SC23
HPE @ SC23 with Justin Hotard
HPE @ SC23 with Trish Damkroger
Intel @ SC23
Intelligent Light @ SC23
Lenovo @ SC23
Penguin Solutions @ SC23
QCT Intel @ SC23
Tyan AMD @ SC23
Tyan Intel @ SC23
HPCwire LIVE from SC23 Playlist

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire