Google Announces Sixth-generation AI Chip, a TPU Called Trillium

By Agam Shah

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium. 

The chip, essentially a TPU v6, is the company’s latest weapon in the AI battle with GPU maker Nvidia and cloud providers Microsoft and Amazon, which have their own AI chips.

The TPU v6 will succeed the TPUv5 chips, which came in two flavors: TPUv5e and TPUv5p. The company said the Trillium chip is “the most performant and most energy-efficient TPU to date.

(Source: Google)

The Trillium chip will run the AI models that will succeed the current Gemini large-language model, Google said at its IO conference in Mountain View, California.

Performance

Google made all-around improvements to the chip. The chip provides 4.7 times more peak compute performance per chip. It also doubles the high-bandwidth memory, internal bandwidth, and chip-to-chip interconnect speed.

“We got to the 4.7x number by comparing the peak compute performance per chip (bf16) of Trillium TPU vs Cloud TPU v5e,” a Google spokeswoman said in an email to HPCwire. 

The BF16 performance on TPU v5e was 197 teraflops, and a 4.7x improvement would put BF16 peak performance on Trillium at 925.9 teraflops. 

A large performance improvement in Google’s TPUs was long overdue. The TPU v5e’s 197 teraflops BF16 performance actually declined from 275 teraflops on the TPU v4.

Memory and Bandwidth

Trillium chips have next-generation HBM memory but didn’t specify whether it was HBM3 or HBM3e, which Nvidia uses in its H200 and Blackwell GPUs. 

The HBM2 capacity on TPU v5e was 16GB, so Trillium will have 32GB of capacity, which is available in both HBM3 and HBM3e. HBM3e provides the most bandwidth.

Up to 256 Trillium chips can be paired in server pods, and inter-chip communication has improved twofold compared to TPU v5e. Google didn’t share inter-chip communication speeds, but they could be 3,200 Gbps, which is two times that of 1,600 Gbps with TPU v5e.

The Trillium TPUs are also 67% more energy-efficient than the TPU v5e, Google said in a blog entry.

Faster Chip Release Cycle

Trillium is replacing the TPU brand name, and will be the branding behind future generations of the chip. Trillium is based on the name of the flower, and not to be confused with AWS’s Trainium, which is an AI training chip.

Google wasted no time releasing its sixth-generation TPU — it hasn’t even been a year since the company released TPU v5 chips. 

TPU v4  introduced in 2020 – hung around for three years until the release of TPU v5. The development of TPU v5 itself was mired in controversy. 

Google claimed that AI agents helped floor-plan the TPU v5 chip about six hours faster than human experts. 

Researchers connected to the TPU v5 AI design project were fired or left, and the claims are currently under investigation by Nature Magazine. (https://www.hpcwire.com/2023/10/03/googles-controversial-ai-chip-paper-under-scrutiny-again/)

The Systems

Server pods will host 256 Trillium chips, and the AI chips will communicate two times faster than similar TPU v5 pod setups. 

The pods can be combined into larger clusters, and communication occurs via optical networking. Communication between pods will also be two times faster, providing the scalability required for larger AI models.

“Trillium TPUs can scale to hundreds of pods, connecting tens of thousands of chips in a building-scale supercomputer interconnected by a multi-petabit-per-second datacenter network,” Google said.

A technology called Multislice strings large AI workloads across thousands of TPUs in a large cluster. That ensures high uptime and power efficiency of TPUs.

The Chip

The chip has third-generation SparseCores, an intermediary chip closer to high-bandwidth memory, where most of the AI crunching takes place. 

The SparseCores bring processing closer to the data in the memory, supporting the emerging computing architecture being researched by AMD, Intel, and Qualcomm.

Typically, data has to move from memory to processing units, which consumes bandwidth and creates chokepoints. The sparse computing model tries to free up network bandwidth by moving processing units closer to memory clusters.

“Trillium TPUs make it possible to train the next wave of foundation models faster and serve those models with reduced latency and lower cost,” Google said.

Trillium also has TensorCores for matrix math. The Trillium chip is designed for AI and won’t run scientific applications.

The company recently announced its first CPU, Axion, which will be paired with Trillium. 

The Hypercomputer

The Trillium chip will be part of Google’s homegrown Hypercomputer AI supercomputer design, which is optimized for its TPUs. 

The design merges compute, network, storage and software to meet varying AI consumption and scheduling models. A “Calendar” system meets hard deadlines on when a task should start, while the “Flex Start” model provides guarantees on when a task will end and deliver results. 

The Hypercomputer includes a software stack and other tools to develop, optimize, deploy, and orchestrate AI models for inference and training. This includes JAX, PyTorch/XLA, and Kubernetes.

The Hypercomputer will continue to work with GPU-optimized interconnect technologies, such as the Titanium offload system and technology, which is based on the Nvidia H100 GPUs.    

Availability

Expect the Trillium chips to be available in Google Cloud, but Google did not provide an availability date. It will be a top-line offering, costing more than TPU v5 offerings. 

The high prices of GPUs in the cloud may make Trillium attractive to customers. Customers already using AI models available in Vertex, which is an AI platform in Google Cloud, may also switch to Trillium.

AWS’s Trainium chip is also available, while Microsoft’s Azure Maia chip is mainly for inference.

Possible Relief From the GPU Squeeze

Google has historically presented its TPUs as an AI alternative to Nvidia’s GPUs. Google has released research papers comparing the performance of TPUs to comparable Nvidia GPUs.

Google recently announced it will host Nvidia’s new GPU, B200, and specialized DGX boxes with Blackwell GPUs.

Nvidia also recently announced it would acquire Run.ai in a deal valued at $700 million. The Run.ai acquisition will allow Nvidia to keep its software stack independent of Google’s stack when running AI models. 

The TPUs were initially designed for Google’s homegrown models, but the company is trying to better map to open-source models that include Gemma, an offshoot of Gemini.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

HPE and NVIDIA Join Forces and Plan Conquest of Enterprise AI Frontier

June 20, 2024

The HPE Discover 2024 conference is currently in full swing, and the keynote address from Hewlett-Packard Enterprise (HPE) CEO Antonio Neri on Tuesday, June 18, was an unforgettable event. Other than being the first busi Read more…

Slide Shows Samsung May be Developing a RISC-V CPU for In-memory AI Chip

June 19, 2024

Samsung may have unintentionally revealed its intent to develop a RISC-V CPU, which a presentation slide showed may be used in an AI chip. The company plans to release an AI accelerator with heavy in-memory processing, b Read more…

ASC24 Student Cluster Competition: Who Won and Why?

June 18, 2024

As is our tradition, we’re going to take a detailed look back at the recently concluded the ASC24 Student Cluster Competition (Asia Supercomputer Community) to see not only who won the various awards, but to figure out Read more…

Qubits 2024: D-Wave’s Steady March to Quantum Success

June 18, 2024

In his opening keynote at D-Wave’s annual Qubits 2024 user meeting, being held in Boston, yesterday and today, CEO Alan Baratz again made the compelling pitch that D-Wave’s brand of analog quantum computing (quantum Read more…

Apple Using Google Cloud Infrastructure to Train and Serve AI

June 18, 2024

Apple has built a new AI infrastructure to deliver AI features introduced in its devices and is utilizing resources available in Google's cloud infrastructure.  Apple's new AI backend includes: A homegrown foun Read more…

Argonne’s Rick Stevens on Energy, AI, and a New Kind of Science

June 17, 2024

The world is currently experiencing two of the largest societal upheavals since the beginning of the Industrial Revolution. One is the rapid improvement and implementation of artificial intelligence (AI) tools, while the Read more…

HPE and NVIDIA Join Forces and Plan Conquest of Enterprise AI Frontier

June 20, 2024

The HPE Discover 2024 conference is currently in full swing, and the keynote address from Hewlett-Packard Enterprise (HPE) CEO Antonio Neri on Tuesday, June 18, Read more…

Slide Shows Samsung May be Developing a RISC-V CPU for In-memory AI Chip

June 19, 2024

Samsung may have unintentionally revealed its intent to develop a RISC-V CPU, which a presentation slide showed may be used in an AI chip. The company plans to Read more…

Qubits 2024: D-Wave’s Steady March to Quantum Success

June 18, 2024

In his opening keynote at D-Wave’s annual Qubits 2024 user meeting, being held in Boston, yesterday and today, CEO Alan Baratz again made the compelling pitch Read more…

Shutterstock_666139696

Argonne’s Rick Stevens on Energy, AI, and a New Kind of Science

June 17, 2024

The world is currently experiencing two of the largest societal upheavals since the beginning of the Industrial Revolution. One is the rapid improvement and imp Read more…

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire