Is the GenAI Bubble Finally Popping?

By Alex Woodie

August 21, 2024

Doubt is creeping into discussion over generative AI, as industry analysts begin to publicly question whether the huge investments in GenAI will ever pay off. The lack of a “killer app” besides coding co-pilots and chatbots is the most pressing concern, critics in a Goldman Sachs Research letter say, while data availability, chip shortages, and power concerns also provide headwinds. However, many remain bullish on the long-term prospects of GenAI for business and society.

The amount of sheer, unadulterated hype layered onto GenAI over the past year and a half certainly caught the attention of seasoned tech journalists, particularly those who lived through the dot-com boom and ensuing bust at the turn of the century, not to mention the subsequent rise of cloud computing and smartphones with the introduction of Amazon Web Services and the Apple iPhone in 2006 and 2007, respectively.

The big data boom of the early 2010s was the next tech obsession, culminating with the coronation of Hadoop as The New New Thing, to paraphrase Michael Lewis’ illuminating 1999 book into Silicon Valley’s fixation on continuous technological reinvention. After the collapse of Hadoop–slowly at first, and then all of a sudden in 2019–the big data marketing machine subtly shifted gears and AI was the hot new thing. Several other new (new) things made valiant runs for attention and VC dollars along the way–Blockchain will change the world! 5G will turbocharge edge computing! Self-driving cars are almost here! Smart dust is new oil!–but nothing really seemed to really gain traction, and the big data world made incremental gains with traditional machine learning while wondering what these newfangled neural networks would ever be good for.

GenAI is the newest new thing

That is, until OpenAI dropped a new large language model (LLM) called ChatGPT onto the world in late 2022. Since then, the hype level for neural network-powered AI, and transformer network-based GenAI in particular, has been eerily reminiscent of these previous Big Moments In Tech. It’s worth pointing out that some of these big moments turned out to be actual inflection points, such as mobile and cloud, some had us asking ourselves “What were we thinking (blockchain, 5G), while it took years for the full lessons from other technological breakthroughs to become apparent (the dot-com boom, even Hadoop-style computing).

So the big question for us now is: Which of those categories will we be putting GenAI into in five years? One of the voices suggesting AI may go the way of 5G and blockchain is none other than Goldman Sachs. In a much-read report from the June edition of the Goldman Sachs Research Newsletter titled “Gen AI: too much spend, too little benefit?” Editor Allison Nathan ponders whether AI will pan out.

“The promise of generative AI technology to transform companies, industries, and societies continues to be touted, leading tech giants, other companies, and utilities to spend an estimated ~$1tn on capex in coming years, including significant investments in data centers, chips, other AI infrastructure, and the power grid,” she writes. “But this spending has little to show for it so far beyond reports of efficiency gains among developers.”

Nathan interviewed MIT Professor Daron Acemoglu, who said that only a quarter of tasks that AI is supposed to automate will actually be automated in a cost-effective manner. Overall, Acemoglu estimates that only 5% of all tasks will be automated within 10 years, raising the overall productivity of the United States by less than 1% over that time.

“Generative AI has the potential to fundamentally change the process of scientific discovery, research and development, innovation, new product and material testing, etc. as well as create new products and platforms,” Acemoglu told Nathan. “But given the focus and architecture of generative AI technology today, these truly transformative changes won’t happen quickly and few–if any–will likely occur within the next 10 years.”

Accelerating GenAI progress by ramping up production of its two core ingredients–data and GPUs–probably won’t work, as data quality is a big piece of the equation, Acemoglu said.

GenAI seems to attract irrational exuberance (Roman-Samborskyi/Shutterstock)

“Including twice as much data from Reddit into the next version of GPT may improve its ability to predict the next word when engaging in an informal conversation,” he said, “but it won’t necessarily improve a customer service representative’s ability to help a customer troubleshoot problems with their video service.”

A shortage in chips suitable for training GenAI models is another factor in Goldman’s pessimistic (some would say realistic) take on GenAI. That has benefited Nvidia enormously, which saw revenue grow by more than 260%, to $26 billion, for the quarter ended April 28. That helped pump its market cap over the $3-trillion market, joining Microsoft and Apple as the most valuable companies in the world.

“Today, Nvidia is the only company currently capable of producing the GPUs that power AI,” Jim Covello, Goldman’s head of global equity research, wrote in the newsletter. “Some people believe that competitors to Nvidia from within the semiconductor industry or from the hyperscalers–Google, Amazon, and Microsoft–themselves will emerge, which is possible. But that’s a big leap from where we are today given that chip companies have tried and failed to dethrone Nvidia from its dominant GPU position for the last 10 years.”

The huge costs involved in training and using GenAI act as headwinds against any productivity or efficiency gains that the GenAI may ultimately deliver, Covello said.

“Currently, AI has shown the most promise in making existing processes–like coding–more efficient, although estimates of even these efficiency improvements have declined, and the cost of utilizing the technology to solve tasks is much higher than existing methods,” he wrote.

Nvidia’s fortunes have skyrocketed thanks to GPU demand from GenAI

Covello was semiconductor analyst when smartphones were first introduced, and learned a few lessons about what it takes to actually realize monetary gains from technological innovation. For instance, the smartphone makers promised to integrate global positioning systems (GPS) into the phones, he said, and they had a roadmap that proved prescient.

“No comparable roadmap exists today” for AI, he said. “AI bulls seem to just trust that use cases will proliferate as the technology evolves. But eighteen months after the introduction of generative AI to the world, not one truly transformative–let alone cost-effective–application has been found.”

Finally, the amount of power required to train LLMs and other GenAI models has to be factored into the equation. It’s been estimated that AI currently consumes about 0.5% of the world’s energy, and that amount is expected to increase in the future.

“Utilities are fielding hundreds of requests for huge amounts of power as everyone chases the AI wave, but only a fraction of that demand will ultimately be realized,” says Brian Janous, the Co-founder of Cloverleaf Infrastructure and formerly the VP of energy at Microsoft.

The total capacity of power projects waiting to connect to the grid grew nearly 30% last year, with wait times currently ranging from 40-70 months, Janous said. With so many projects waiting for power, data centers looking for more power to fuel AI training will become “easy targets.”

The US needs to expand its grid to handle expected increase for power demand, but that isn’t likely to be done cheaply or efficiently, he said. “The US has unfortunately lost the ability to build large infrastructure projects–this is a task better suited for 1930s America, not 2030s America,” Janous said. “So, that leaves me a bit pessimistic.”

The enormous electricity demands of AI, and the US’s inabilty to build new power sources, also pose headwinds to AI success (BESTWEB/Shutterstock)

But not everyone is pessimistic about AI’s future. One GenAI optimist is Joseph Briggs, Goldman’s senior global economist. In his article countering  Acemoglu, Briggs estimates that GenAI ultimately will automate 25% of all work tasks and raise US productivity by 9% and GDP growth by 6.1% cumulatively over the next decade. What’s more, GenAI will not only automate some existing tasks currently done by humans, but will spur the creation of new tasks, he said.

“…[T]he full automation of AI exposed tasks that are likely to occur over a longer horizon could generate significant cost savings to the tune of several thousands of dollars per worker per year,” he wrote. “The cost of new technologies also tends to fall rapidly over time. Given that cost-saving applications of generative AI will likely follow a similar pattern, and that the marginal cost of deployment will likely be very small once applications are developed, we expect AI adoption and automation rates to ultimately far exceed Acemoglu’s 4.6% estimate.”

Kash Rangan is another GenAI believer. In an interview with the Goldman editor Nathan, the senior equity research analyst said he’s amazed at the pace of GenAI innovation and impressed at the infrastructure buildout of the cloud bigs. He acknowledged that GenAI hasn’t discovered its killer app yet, in the way that ERP dominated the 1990s, search and e-commerce dominated the 2000s, and cloud applications dominated the 2010s.

“But this shouldn’t come as a surprise given that every computing cycle follows a progression known as IPA—infrastructure first, platforms next, and applications last,” Rangan said. “The AI cycle is still very much in the infrastructure buildout phase, so finding the killer application will take more time, but I believe we’ll get there.”

His colleague, Eric Sheridan, joined him in a bullish stance.

“So, the technology is still very much a work in progress. But it’s impossible to sit through demonstrations of generative AI’s capabilities at company events or developer conferences and not come away excited about its long-term potential,” he said.

“So, while I would never say I’m not concerned about the possibility of no payback, I’m not particularly worried about it today, though I could become more concerned if scaled consumer applications don’t emerge over the next 6-18 [months],” Sheridan said.

The promise of GenAI remains high, if unfulfilled at the end of the day. The big question right now is whether GenAI’s returns will go up before the clock runs out. The clock is ticking.

Related Items:

Gartner Warns 30% of GenAI Initiatives Will Be Abandoned by 2025

GenAI Hype Bubble Refuses to Pop

When GenAI Hype Exceeds GenAI Reality

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it would build the supercomputer with Nvidia's Blackwell GPUs an Read more…

ZLUDA Takes Third Wack as a CUDA Emulator

October 7, 2024

The ZLUDA CUDA emulator is back in its third invocation. At one point, the project was quietly funded by AMD and demonstrated the ability to run unmodified CUDA applications with near-native performance on AMD GPUs. Cons Read more…

Quantum Companies D-Wave and Rigetti Again Face Stock Delisting

October 4, 2024

Both D-Wave (NYSE: QBTS) and Rigetti (Nasdaq: RGTI) are again facing stock delisting. This is a third time for D-Wave, which issued a press release today following notification by the SEC. Rigetti was notified of delisti Read more…

Alps Scientific Symposium Highlights AI’s Role in Tackling Science’s Biggest Challenges

October 4, 2024

ETH Zürich recently celebrated the launch of the AI-optimized “Alps” supercomputer with a scientific symposium focused on the future possibilities of scientific AI thanks to increased compute power and a flexible ar Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of its Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it w Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whateve Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire