Ties That Bind: Organizing Large-Scale HPC in the European Union

By John E. West

June 19, 2008

The combined economic resources of the 27 member states of the European Union make it the largest economy in the world. No stranger to the world of HPC, and convinced of the power of technology to further propel the prosperity and well-being of its citizens, the EU is investing heavily in pan-European resources that it hopes will propel its members to the forefront of the computational stage.

Viviane Reding, the European commissioner for Information Society and Media, believes in the power of technology to transform lifestyles and drive the prosperity of the European Union. Her portfolio stretches from telecommunications to eHealth services. And she believes in HPC.

A recent Computerworld article captured her remarks at the opening of the Ter@tec 2008 HPC conference in France, “Supercomputers are the ‘cathedrals’ of modern science, essential tools to push forward the frontiers of research at the service of Europe’s prosperity and growth.” But, as many of us know firsthand, building a large-scale supercomputing infrastructure to support research and industrial goals is complicated and can take enormous financial resources.

The computers themselves, often costing upwards of $100M for leadership resources, are just the down payment. Indeed, modern HPC center planners now count on the lifecycle costs of supercomputers to outstrip their acquisition costs.

Users must be able to connect to supercomputing centers over high bandwidth, low latency, very wide area networks, and they must be supported through routine questions and complicated software issues. The systems require continuous care and feeding by trained administrators. Multi-thousand ton chillers must be bought and installed, and building power infrastructures must be expanded to support the multi-megawatt needs of modern supercomputers.

As the two largest economies in the world, the United States and Japan have been in a position to devote the resources needed to develop and sustain world-leading supercomputing infrastructures. While each of the countries of Europe have made, to varying degrees, national investments in HPC, those economies individually simply didn’t have the resources to compete with the US and Japan. The collective resources of the European Union, however, may dramatically alter that dynamic.

Collectively the 27 member states of the European Union represent the world’s largest economy. Through its various science and industrial research programs, the EU, along with individual members acting in concert, has committed to creating a supranational supercomputing infrastructure on a par with anything the US and Japan have created to date.

One of the key focal points for HPC in the EU is DEISA, the Distributed European Infrastructure for Supercomputing Applications. DEISA is a consortium of national supercomputing centers in Europe, brought together with a common infrastructure to advance broader European computational science research goals. I spoke with Stefan Heinzel, the project coordinator for DEISA, and Hermann Lederer, who leads external relations, by email about the effort.

I asked them to describe how DEISA fits into the science ecosystem in Europe. “An agency like the US National Science Foundation is a national science policy and funding agency, as are research units of the European Commission (EC) at European level, and respective national organisations,” says Lederer. “The EC is co-funding the DEISA2 project along with various national partners, as the NSF is funding the TeraGrid project. DEISA is an HPC infrastructure project and can be regarded as a European counterpart of TeraGrid.”

There are 11 principal partner centers from seven European countries participating in DEISA, including the Rechenzentrum Garching of the Max Planck Society (RZG), the Barcelona Supercomputing Center (BSC), the Jülich Supercomputing Centre (JSC), the Edinburgh Parallel Computing Centre (EPCC), and others. The partnership has been operational for some time, having just received a new round of funding from the Seventh Framework Programme Research and Technological Development, the EU’s research funding arm.

As explained by Lederer, the DEISA infrastructure is layered on top of existing national supercomputing centers, each with its own skills, funding, and computational goals. Each of these national resources sets aside a portion of its resources for computational projects at the European level. No hardware funding is awarded through DEISA; all upgrades to HPC systems are funded by individual member states and institutions. Starting with only 30 teraflops in 2004, DEISA sites have grown to roughly 1 petaflops of aggregate performance in 2008.

DEISA partners are connected to users, and to one another, via GEANT2 and the National Research and Education Networks. This infrastructure connects DEISA sites at 10 Gbps, with dedicated wavelengths on the NRENs and GEANT2.

DEISA encourages researchers to stretch the boundaries of their understanding on important research issues through the DEISA Extreme Computing Initiative (DECI). DECI projects are awarded large blocks of time on DEISA HPC resources to tackle especially challenging, large-scale computational problems. In DEISA1, DECI awards were made on individual projects. Beginning this year with DEISA2, the EU is shifting focus to projects that will support Virtual Science Communities across Europe, strengthening the overall R&D environment and encouraging broader collaboration. DEISA is also shifting the technologies and expertise it invests in to provide tools that will integrate broader teams, including resource integration via grid technologies, and Web tools and portals. Interestingly DEISA provides data management services and an infrastructure for the European research community that includes a common multi-cluster filesystem, accessible from nearly any DEISA HPC platform, based on IBM’s Multicluster GPFS.

While the 1 petaflops of aggregate computational power deployed by DEISA partners is certainly significant, the EU and European HPC leaders have recognized a need to further increase their investment to support goals of advancing the prosperity of Europe through global computational leadership. Enter PRACE, the Partnership for Advanced Computing in Europe.

The goal of PRACE is to establish three to five European “tier 0” centers, each with petascale resources, that will serve broader EU science and industrial research goals. PRACE is still very much a planning exercise, currently funded at 40M euros of what is expected to grow to an estimated 200M euro budget for operations alone. PRACE envisions a three-year lifecycle for its large machines, and doesn’t intend to operate them in isolation. According to Lederer, “PRACE and DEISA activities are expected to merge for the operation of tier 1 and future tier 0 centers in an integrated European HPC ecosystem. Most PRACE members are already DEISA partners.”

In contrast to DEISA, which is a bottom-up approach organizing existing centers, PRACE is a top-down exercise. Why the shift? I talked with Achim Bachem, coordinator of the PRACE project, by email. “Combining national resources in a bottom-up way merges capacities, but does not provide larger capabilities. Procuring systems of the highest performance level requires the combined financial efforts of more than one country,” says Bachem. “The second reason is that we want to create a homogeneous pan-European HPC service with common access policies and a single peer review system. This will be an important contribution to the European Research Area and also requires a top-down approach.”

PRACE just started operations in January of this year, and they have a lot of work ahead of them. Their first challenge is to determine what legal entity is best to conduct PRACE business, and how it will be organized. According to Dr. Bachem, this won’t be easy, “This is an essential and complex task, since national as well as European interests have to be combined into a single transparent and efficient framework.”

While things get organized, progress is being made on the technical front with a survey of architectures and candidate petaflops systems for 2010. “Based on the suitability of the various architectures for important applications, we have defined a set of prototype systems that will cover all relevant architectures, ranging from well proven ones like MPPs to upcoming hybrid systems,” says Bachem. “Since this joint proposal has an overall budget of several million euros, it will be evaluated and approved by the European Commission in July, before we start the acquisition.”

Will the focus be on production-quality systems or novel architectures? According to Dr. Bachem, both: “…one of the advantages of this joint European venture is that we will be able to operate more than one leadership system at any given point in time. This gives us the freedom to also invest in more advanced technologies.”

PRACE isn’t only focused on hardware. Its largest work package (in person-months) is devoted to software for petascale systems. “In the past,” says Bachem, “software has been a European strength, but currently there is nothing comparable to the SciDAC initiative in the US. Europe has to be more active in this area in the future.”

This effort is clearly a major potential benefit for the European (and global) scientific and research community, but there is significant time pressure to deliver results quickly. Implementation is not scheduled to begin until late 2009 or 2010, with much of the next two years focused on organization and planning. With the release of the latest TOP500 list officially marking the passage of the petaflops hurdle this week, petascale systems, while certainly not routine by 2010-2011, won’t be major scientific accomplishments either. In order to ensure the relevance of this substantial program, the EU knows it has to act as quickly as it can.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire