The Week in HPC Research – 02/21/2013

By Nicole Hemsoth

February 21, 2013

The top research stories of the week have been hand-selected from prominent journals and leading conference proceedings. Here’s another diverse set of items, including one on GPU programming, distributed file systems, exhaustive search with parallel agents, the benefits of invasive computing, and an HPC cloud proof-of-concept.

Extending OpenMP for GPU Programming

The International Journal of Computational Science and Engineering (Volume 8, Number 1/2013) includes an interesting research item from Seyong Lee (Computer Science and Mathematics Division, Oak Ridge National Laboratory) and Rudolf Eigenmann (School of Electrical and Computer Engineering, Purdue University). The duo have developed a directive-based OpenMP extension to address programmability and tunability issues relevant to the GPGPU developer community.

GPGPU computing provides an inexpensive parallel computing platform for compute-intensive applications, yet programming complexity can challenge developers hindering more widespread adoption, the authors note. “Even though the compute unified device architecture (CUDA) programming model offers better abstraction, developing efficient GPGPU code is still complex and error–prone,” they argue.

Thus the authors propose a new programming interface, called OpenMPC, comprised of standard OpenMP and a new set of compiler directives and environment variables that have been extended for CUDA. They argue that OpenMPC, a directive–based, high–level programming model, offers better programmability and tunability for GPGPU code.

“We have developed a fully automatic compilation and user–assisted tuning system supporting OpenMPC. In addition to a range of compiler transformations and optimisations, the system includes tuning capabilities for generating, pruning, and navigating the search space of compilation variants. Evaluation using 14 applications shows that our system achieves 75% of the performance of the hand–coded CUDA programmes (92% if excluding one exceptional case),” they write.

Next >>

Six Distributed File Systems

A trio of French scientists provide a thorough analysis of six distributed file systems in this recent 39-page research paper, appearing in the HAL/INRIA open archive. The authors, one from SysFera and two from Laboratoire MIS at the Universite de Picardie Jules Verne, start with the observation that a large number of HPC applications rely on distributed computing environments to process and analyze large amounts of data. (Examples provided include probabilistic analysis, weather forecasting and aerodynamic research.) They further note the emergence of new infrastructures designed to handle the increased computational demand. Most of these new architectures, the authors assert, involve some manner of distributed computing, such that the computing process is spread among the nodes of a large distributed computing platform.

Furthermore the team believes that the growing body of scientific data will likewise necessitate innovations in distributed storage. “Easy to use and reliable storage solutions” are essential for scientific computing, they argue, and the community already has a “well-tried solution to this issue,” in the form of Distributed File Systems (DFSs).

The paper offers a comparison of six modern DFSs as to three fundamental issues: scalability, transparency and fault tolerance. For their study, the authors selected popular, widely-used and frequently updated DFSs: HDFS, MooseFS, iRODS, Ceph, GlusterFS, and Lustre.

Next >>

Exhaustive Search with Parallel Agents

In a recent paper, Macedonia researcher Toni Draganov Stojanovski from University for Information Science And Technology in the Republic of Macedonia sets out to examine the performance of exhaustive search when it is conducted with many search agents working in parallel.

Stojanovski and his research team observe that the advance of manycore processors and more sophisticated distributed processing offers more opportunities for exhaustive search via the use of multiple search agents. While there are a selection of elegant algorithms available for solving complex problems, exhaustive search remains as the best or only solution for real-life problems with no regular structure.

The paper reviews the performance that is achieved using the exhaustive search approach in conjunction with several different search agents with special attention to the following parameters:

• Differences in speeds of search agents.

• Length of allocated search subregions.

• Type of communication between central server and agents.

The findings reveal that the performance of the search improves with the increase in the level of mutual assistance between agents. Furthermore, nearly identical performance outcomes can be achieved with homogeneous and heterogeneous search agents as long as “the lengths of subregions allocated to individual search regions follow the differences in the speeds of heterogeneous search agents.” The research team also demonstrate how to achieve the optimum search performance by means of increasing the dimension of the search region.

The work appears in the January issue of the Turkish Journal of Electrical Engineering & Computer Sciences.

Next >>

The Benefits of Invasive Computing

In their paper, titled Invasive Computing on High Performance Shared Memory Systems, three researchers from the Department of Informatics, at Garching, Germany, offer new approaches for improving the throughput of runtime-adaptive applications on cutting-edge HPC systems. Their work was published as a chapter in Facing the Multicore Challenge III.

According to the team, there are multiple issues at play:

A first issue is the, in general, missing information about the actual impact of unforeseeable workload by adaptivity and of the unknown number of time steps or iterations on the runtime of adaptive applications. Another issue is that resource scheduling on HPC systems is currently done before an application is started and remains unchanged afterwards, even in case of varying requirements. Furthermore, an application cannot be started after another running application allocated all resources.

The authors propose a solution that involves the design of algorithms that adapt their use of resources during runtime, e.g., by relinquishing or adding compute cores. In the event that concurrent applications are competing for resources, they recommend that an appropriate resource management solution be adopted.

To improve the throughput of runtime-adaptive applications, the computer scientists employed invasive paradigms that start applications and schedule resources during runtime. Scheduling work can be achieved through the use of a global resource manager, and scalability graphs help improve load balancing of multiple applications. In the case of adaptive simulations, several scalability graphs are employed.

The paper includes a proof-of-concept that demonstrates runtime/throughput results for a fully adaptive shallow-water simulation.

Next >>

Easy to Use Cloud Service

Among the many HPC cloud research pieces that were published this week was an Australian endeavor that seeks to transform complicated HPC applications into easy-to-use SaaS cloud services. Researchers Adam K.L. Wonga and Andrzej M. Goscinskia from the School of Information Technology at Deakin University in Australia set out to develop and test a unified framework for HPC applications as services in clouds.

The duo acknowledge the benefits of HPC cloud. Scalable, affordable and accessible on demand, the use of HPC resources in a cloud environment have been a natural fit for many scientific disciplines, including biology, medicine, chemistry, they write. Still they have observed a steep learning curve when it comes to preparing for and deploying HPC applications in the cloud. This they say has stood in the way of many innovative HPC-backed discoveries.

To remedy this situation and improve ease of use and access to HPC resources, the researchers are looking to the world of Web-based tools, but as they write “high-performance computational research are both unique and complex, which make the development of web-based tools for this research difficult.”

The paper describes their approach to developing a unified cloud framework – one that makes it easier for various domain users to deploy HPC applications in public clouds as services. Their proof-of-concept integrates three components:

(i) Amazon EC2 public cloud for providing HPC infrastructure.

(ii) a HPC service software library for accessing HPC resources.

(iii) the Galaxy web-based platform for exposing and accessing HPC application services.

The authors conclude that “this new approach can reduce the time and money needed to deploy, expose and access discipline HPC applications in clouds.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire