34 University of Illinois Researcher Teams Awarded Allocations on Blue Waters Supercomputer

June 11, 2018

June 11, 2018 — Thirty-four research teams at the University of Illinois have been awarded an allocation of computation time on the sustained petascale Blue Waters supercomputer, one of the most powerful high-performance computing systems in the world, located at the National Center for Supercomputing Applications (NCSA) and supported by the National Science Foundation(NSF). This allocation process, the final round of Illinois allocations, has awarded over 5.5 million node-hours to University of Illinois researchers, valued at nearly $3.7 million. Over its lifetime, Illinois allocations have provided more than 50M node hours valued at over $31 million to University of Illinois researchers.

This year’s allocations, which include nine additional exploratory awards, range from 500,000 node-hours to 20,000 node-hours, and seek to study issues big and small, spanning from the investigation of binary star mergers deep in space to simulations of individual cells.

Allocations on Blue Waters, which is capable of producing quadrillions of calculations every second, are highly sought-after by researchers due to its sheer computational power, robustly balanced architecture and massive scale. Blue Waters allows scientists and researchers to tackle some of the world’s most pressing problems, regardless of subject-matter, more quickly than ever before thanks to the power of efficient parallel computing.

The Illinois allocations process allows Blue Waters to be utilized by University of Illinois faculty, giving researchers on campus an opportunity to use an extremely valuable computational resource. In turn, this furthers the University of Illinois’ mission to foster discovery and innovation, with about 2 percent of the capacity of Blue Waters allocated annually to projects at the University through a campus-wide peer-review process.

Applications for Illinois allocations on Blue Waters were accepted through mid March, 2018. This is the final round of Illinois allocation awards.

AWARDS

  • Rafael Omar Tinoco Lopez, Som Dutta and Paul Fischer — “Investigation of Sediment and Nutrient Fluxes through Aquatic Vegetation using Large-scale High-fidelity Turbulence Simulations” (480 KNH)
  • Edgar Solomonik — “Benchmarking and Tuning Numerical Tensor Libraries” (20 KNH)
  • Milton Javier Ruiz, Stuart Shapiro and Antonios Tsokaros — “Gravitational and Electromagnetic Signatures of Compact Binary Mergers: General Relativistic Simulations at the Petascale” (500 KNH)
  • David Bianchi, Tyler Earnest, Michael Hallock and Zan Luthey-Schulten — “Whole Cell Simulations of a Minimal Cell” (150 KNH)
  • Eliu Huerta, Roland Haas, Gabrielle Allen, Edward Seidel and Zhizhen Zhao — “Simulation, Modeling and Searches of Multimessenger Sources with the Blue Waters Supercomputer” (425 KNH)
  • Lucas Wagner — “A Data-Centered Approach to Studying Electronic Behavior in Superconductors and Correlated Electron Systems” (230 KNH)
  • Christopher Maffeo, David Winogradoff, Kush Coshic and Aleksei Aksimentiev — “Resolving the Structure of Viral Genomes with Atomic Precision” (400 KNH)
  • Matthew Hudson, Liudmila Mainzer and Yan Asmann — “Identification of Novel Genomic Variants in Alzheimer’s Disease” (280 KNH)
  • Matthew West and Jeffrey Curtis — “Simulating Fine Aerosol Particles for Human Exposure using the High-detail Particle-resolved Aerosol Model WRF-PartMC” (280 KNH)
  • Tandy Warnow — “Improving Homology Detection, Gene Binning and Multiple Sequence Alignment” (100 KNH)
  • Diwakar Shukla — “Mechanism of Nitrate Transport in Plants” (400 KNH)
  • Rebecca Smith, Rebecca Stumpf, Joanna Shisler, Than Huong Nguyen and Tandy Warnow — “Viral Transmission Dynamics at the Human-Wildlife Interface in Western Uganda” (80 KNH)
  • Donald Wuebbles, Xin-Zhong Liang and Swarnali Sanyal — “Particulate Matter Prediction and Source Attribution for U.S. Air Quality Management in a Changing World”
  • Kaiyu Guan — “Forecasting Crop Productivity using Novel Satellite Data and Process-based Models: Scaling Up to the Whole U.S. Corn Belt” (200 KNH)
  • Taras Pogorelov, Chad Rienstra and Martin Burke — “How Amphotericin, the Antifungal Drug of Last Resort, Captures Sterols: The Good and the Bad?” (200 KNH)
  • Alina Kononov and Andre Schleife — Non-adiabatic Electron-ion Dynamics in Ion-irradiated Two-dimensional Materials” (200 KNH)
  • Bradley Sutton and Alex Cerjanic — Accelerating Imaging-based Biomarker Development through HPC” (250 KNH)
  • Mark Neubauer, Philip Chang, Robert Gardner, Dave Lesny and Dewen Zhong — “Deep Learning for Higgs Boson Identification and Searches for New Physics at the Large Hadron Collider” (225 KNH)
  • Elif Ertekin — “Accelerating Thermoelectric Materials Discovery via Dopability Predictions” (185 KNH)
  • Xiaodong Song — “Modeling the Structure of the Earth’s Deep Interior from 3D Wave-propagation Simulation and Seismic Noise Interferometry” (160 KNH)
  • Aida El-Khadra, Zecharaiah Gelzer and Ruth Van de Water — “A Lattice QCD Study of the Contribution of Two-pion States to the Hadronic Vacuum Polarization Correction of the Muon’s Magnetic Movement” (225 KNH)
  • Wendy Tam Cho, Yan Liu and Simon Rubinstein-Salzedo — “Massively Parallel Evolutionary Markov Chain Monte Carlo for Sampling Complicated Multimodal State Spaces” (100 KNH)
  • Patricia Gregg — “Forecasting Volcanic Unrest and Eruption Potential using Statistical Data Assimilation” (85 KNH)
  • Moshe Matalon — “Outwardly Expanding Premixed Flames in Turbulent Media” (80 KNH)
  • Mao Ye — “Understanding Traders at Nano-second Time Scale” (80 KNH)

EXPLORATORY AWARDS

  • William Gropp and Erin Molloy — “Optimizing a Distributed-memory Parallel Code for Constructing Ultra-large Phylogenetic Trees on Blue Waters” (50 KNH)
  • Luke Olson — “Utilizing Machine Topology and Heterogeneity in Numerical Algorithms” (50 KNH)
  • Levent Gurel, Wen-Mei Hwu and Mert Hidayetoglu — “Parallel MLFMA on Heterogeneous CPU-GPU Architectures for Imaging and Inverse Scattering” (50 KNH)
  • Charles Gammie and Patrick Mullen — “High Resolution Simulations of the Moon-forming Giant Impact” (30 KNH)
  • Marc Snir — “Detecting Silent Data Corruptions in Exascale Applications” (40 KNH)
  • Wei Chen and Andrew Ferguson — “Collective Variable Discovery and Enhanced Sampling in Biomolecular Simulation using Autoencoders” (30 KNH)
  • Michael Nute, Rebecca Stumpf and Karthik Yarlagadda — “Dissertation: In Search of a Quantitative Definition of the Gut Microbiome in Inflammatory Bowel Disease through Big Data” (50 KNH)
  • Iwan Duursma and Hsin-Po Wang — “Tutte Polynomials and Performances of Individual Rows of Reed-Muller Codes of Length 64 and 128 on Erasure Channels” (20 KNH)
  • Matias Carrasco Kind and Brandon Buncher — “Classifying Large-scale Structure Galaxies using Machine Learning” (35 KNH)

ABOUT NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50® for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.

ABOUT NCSA’S BLUE WATERS PROJECT

The Blue Waters petascale supercomputer is one of the most powerful supercomputers in the world. Blue Waters uses hundreds of thousands of computational cores to achieve peak performance of more than 13 quadrillion calculations per second. With 1.5 petabytes of memory, Blue Waters has faster data storage than any other open system in the world. Scientists and engineers across the country use the computing and data power of Blue Waters to tackle a wide range of interdisciplinary challenges. Recent advances that were not possible without these resources include computationally designing the rst set of antibody prototypes to detect the Ebola virus, simulating the HIV capsid, visualizing the formation of the first galaxies and exploding stars, and understanding how the layout of a city can impact supercell thunderstorms.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire