8 Berkeley Lab Scientists Named 2020 AAAS Fellows

November 25, 2020

Nov. 25, 2020 — The American Association for the Advancement of Science (AAAS), which was founded in 1848 and is the world’s largest general scientific society, announced that 489 of its members, among them eight scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), have been named Fellows.

This lifetime honor, which follows a nomination and review process, recognizes scientists, engineers, and innovators for their distinguished achievements toward the advancement or applications of science.

The new Berkeley Lab Fellows and their organizational area or division are:

  • Wibe A. “Bert” de Jong (Computational Research Division)
  • Spencer R. Klein (Nuclear Science Division)
  • Sanjay Kumar (Biological Systems and Engineering Division)
  • Mary E. Maxon (Biosciences Area)
  • Esmond G. Ng (Computational Research Division)
  • Len Pennacchio (DOE Joint Genome Institute; Environmental Genomics and Systems Biology Division)
  • Robert Oliver Ritchie (Materials Sciences Division)
  • Peidong Yang (Materials Sciences and Chemical Sciences Divisions)

Bert de Jong, a Computational Research Division (CRD) senior scientist, was recognized for “seminal contributions to the development of scientific computing tools and approaches used worldwide, which has enabled advancements in the chemical sciences.”

Within CRD, de Jong leads the Computational Chemistry, Materials, and Climate Group, which advances scientific computing by creating and enhancing applications in key disciplines, as well as developing tools and libraries for addressing general problems in computational science. The group is currently focused on applications for exascale computing, quantum computing, and machine learning for chemical and materials sciences and beyond.

He is the Berkeley Lab lead on the Department of Energy (DOE) Exascale Computing Project’s NWChemEX project, contributing to the development of a new exascale computational chemistry code. Looking beyond Moore’s Law, de Jong is the director of the QAT4Chem and AIDE-QC projects, which are focused on developing algorithms and software for quantum computers. In quantum computing, he is collaborating on various chemical sciences, high-energy physics, and nuclear sciences projects. He’s also working with researchers at the Seaborg Institute to elucidate actinide chemistry.

De Jong has published more than 110 journal papers, 17 conference papers, seven book chapters, and one edited book with more than 6,300 citations. He is the founding Editor-in-Chief for the IOP journal Electronic Structure, a Specialist Editor for Computer Physics Communications, and an Associate Editor for Computational and Mathematical Methods.

Spencer Klein, a senior scientist in Berkeley Lab’s Nuclear Science Division and research physicist at UC Berkeley, was recognized for his “contributions in the interface of astrophysics, nuclear physics, and particle physics, including neutrino astrophysics and ultra-peripheral collisions of heavy ions.”

Klein is an experimental physicist whose research includes the detection of astrophysical neutrinos – ghostly particles that originate outside our solar system – using large detector arrays. He has held several leadership roles in the IceCube Neutrino Observatory experiment, which uses an array of more than 5,400 spherical detector modules embedded in South Pole ice to capture light signals related to neutrino interactions. On IceCube, he leads efforts to use naturally produced, high-energy neutrinos to study the properties of neutrinos’ interactions at energies far beyond those available at human-made accelerators, and he led the effort to make the first measurement of neutrino absorption in the Earth.

Klein also studies ultra-peripheral collisions of heavy ions. In these collisions, scientists use photons from one ion to make precise measurements of the internal structure of the other colliding ion. Klein pioneered major aspects of the theoretical and experimental applications for these types of collisions through his work on Brookhaven National Laboratory’s STAR detector. He is now studying these reactions at higher energies using the ALICE detector at CERN, where he is the convenor of a working group focused on ultra-peripheral collisions, diffractive interactions, and cosmic-ray physics.

Klein’s physics interests and expertise have led to his involvement in the planned Electron-Ion Collider at Brookhaven Lab, and he is part of a team that is supporting this collider effort by developing detectors to study vector meson production. He also led a Laboratory Directed Research and Development effort to perform simulations and accelerator physics studies related to the collider. Klein served as deputy director for Berkeley Lab’s Nuclear Science Division from 2011 to 2013. He was named a Fellow of the American Physical Society in November 2009, and serves as chairman of the APS Committee on Scientific Publications.

Sanjay Kumar, a faculty scientist in Berkeley Lab’s Biological Systems & Engineering Division and professor and chair of UC Berkeley’s Bioengineering Department, has been elected for his “distinguished contributions to the field of bioengineering, particularly the development of biomaterial and single-cell technologies to investigate mechanobiological signaling in health and disease.”

Kumar’s research group investigates the molecular basis of cell shape, mechanics, and motility, as well as how cells mechanically interact with their surroundings. This work provides key insight into many areas of biology and medicine, including how tissues develop and how tumors grow and spread. His team is currently investigating how cancer and stem cells sense and process biophysical signals. They are also developing high-functioning “smart” materials inspired by structural networks within cells and tissues.

After earning both an M.D. and Ph.D. in molecular biophysics from Johns Hopkins University, Kumar served as an NIH Research Fellow at Children’s Hospital Boston and Harvard Medical School. He first joined the UC Berkeley faculty in 2005, and was named Chair of Bioengineering in 2019. He also currently serves as a professor of chemical and biomolecular engineering. Kumar is also an elected Fellow of the American Institute for Medical and Biological Engineering, and the Biomedical Engineering Society. He was previously awarded the Presidential Early Career Award for Scientists and Engineers, the NIH Director’s New Innovator Award, the Arnold and Mabel Beckman Young Investigator Award, the NSF CAREER Award, and the Stem Cells Young Investigator Award.

Mary Maxon, the Associate Laboratory Director for Berkeley Lab’s Biosciences Area, was recognized for her “outstanding contributions to science-informed policymaking, wise policies for life sciences research, research management, and science philanthropy.”

Before joining the Biosciences Area leadership team, Maxon gained a comprehensive view of the many technological and economic opportunities – and accompanying challenges – of the current biological research landscape by working in both the public and private sectors. After earning a Ph.D. in molecular cell biology from UC Berkeley and doing a postdoc in genetics at UCSF, she worked at several biotechnology and pharmaceutical companies before venturing into policy, most notably serving as the Assistant Director for Biological Research at the White House Office of Science and Technology Policy during the Obama Administration, during which she developed the foundational National Bioeconomy Blueprint.

In her role at Berkeley Lab, Maxon developed and is leading a large-scale scientific strategic plan aimed at advancing the U.S. bioeconomy by fostering close relationships between the DOE national labs, academia, and industry; and by leveraging the continually advancing, world-class facilities, equipment, and expertise that is unique to Berkeley Lab. Earlier this year, she testified at a hearing held by the U.S. House of Representatives Committee on Science, Space, and Technology about how the DOE’s wide portfolio of biosciences capabilities have been an essential part of the country’s ongoing COVID-19 pandemic response.

Maxon also serves on the steering group of the International Advisory Council of the Global Bioeconomy Summit 2020; serves as the incoming chair of the AAAS Committee on Science, Engineering, and Public Policy; is a member of Berkeley Lab’s Senior Leadership Council for Inclusion, Diversity, Equity, and Accountability; and previously served as the first executive director of the Science Philanthropy Alliance.

Esmond Ng, CRD senior scientist and division deputy, was recognized for “distinguished contributions to research in numerical algebra and high-performance computing, and for scientific leadership.”

Ng has been a leader in the DOE Scientific Discovery through Advanced Computing (SciDAC) program since 2001, where he has led a team of computational mathematicians that works closely with domain scientists and develops and applies sparse matrix techniques to solve challenging large-scale DOE scientific problems. The sparse matrix algorithms that Ng and his collaborators have developed are well known and used in a variety of scientific and engineering applications, such as structural analysis, numerical optimization, computational fluid dynamics, and finite element calculations. He was a key contributor to the SPARSPAK package, one of the first efficient and reliable software packages for solving large sparse systems of linear equations. The package was used widely by organizations like Boeing and NASA, as well as by university researchers.

The research efforts by Ng and his collaborators have accelerated scientific discoveries, which include detecting design defects in accelerator cavities through modeling and simulation for the upgrade of DOE’s Continuous Electron Beam Accelerator Facility at Thomas Jefferson National Accelerator Laboratory; predicting the properties of the Fluorine-14 isotope through simulation before it was detected experimentally in 2010 at Texas A&M University’s Cyclotron Institute; and understanding why the Carbon-14 isotope (which is used for carbon dating) has such a long, useful lifetime. All three breakthroughs required the solution of large-scale sparse matrix problems (sparse systems of linear equations and sparse eigenvalue calculations) at the heart of the computation.

Ng’s research career spans more than three decades, during which he has co-authored more than 60 peer-reviewed technical papers and more than 40 conference papers and written chapters for nine books on matrix computation. He also co-authored the book “Parallel Algorithms for Matrix Computations,” which was published by the Society for Industrial and Applied Mathematics.

Len Pennacchio, a senior scientist in the Environmental Genomics and Systems Biology Division, the Deputy of Genomic Technologies at the DOE Joint Genome Institute (JGI), and an adjunct professor at UC Berkeley, was recognized for his “distinguished and pioneering contributions toward understanding how the noncoding genome works to regulate gene expression and to affect normal mammalian development and disease.”

In 1999, Pennacchio joined Berkeley Lab as a DOE Alexander Hollaender Distinguished Postdoctoral Fellow where he began his work on noncoding human DNA.

Pennacchio was involved in DOE’s contribution to the Human Genome Project and has spent his career understanding how genes are functionally regulated and how this regulation goes awry in human disease. He also leads the development and deployment of new genomic technologies to support the work of JGI’s user community in energy and environmental research and applications.

Pennacchio is a recipient of the White House Presidential Early Career Award for Scientists and Engineers and the Genome Technology Magazine Award for Tomorrow’s PIs. He currently co-chairs three “Advances in Genome Biology & Technology” scientific meetings and serves on the National Advisory Council for Human Genome Research within the National Institutes of Health.

Robert Oliver Ritchie, a senior faculty scientist in Berkeley Lab’s Materials Sciences Division and of H.T. & Jessie Chua Distinguished Professor of Engineering, Professor of Mechanical Engineering, and Professor of Materials Science & Engineering at UC Berkeley, was recognized for his “distinguished contributions to the understanding of the fracture of materials and structures, from metals, ceramics, and composites to aircraft, medical devices, and biological materials.”

Ritchie joined Berkeley Lab in 1981. Much of his pioneering research is focused on investigating the mechanical behavior of metals and ceramics as well as composites and biological materials. Among his vast body of work, which includes patented technologies and hundreds of scientific papers and other publications, his most notable discoveries uncovered the microstructural mechanisms by which structural materials resist fracture and fatigue.

He is a Foreign Member of the Royal Society in the U.K., the Royal Swedish Academy of Engineering Sciences, and the Russian Academy of Sciences; a member of the U.K. Royal Academy of Engineering and the European Academy of Sciences; and a fellow of the Materials Research Society, the American Ceramic Society, and the American Society of Mechanical Engineers. He is also a member of the National Academy of Engineering, and a fellow/life member of the Minerals, Metals & Materials Society.

Peidong Yang, a senior faculty scientist in Berkeley Lab’s Materials Sciences and Chemical Sciences Divisions, professor of chemistry and S.K. and Angela Chan Distinguished Professor of Energy at UC Berkeley, and a world-renowned expert on nanostructures and synthesis of new classes of materials, was recognized for “his pioneering work on semiconductor nanowire-based technology, including molecularly designed nanosystems to solve some of the most vexing energy problems of our time.”

Yang, who joined Berkeley Lab’s Materials Sciences Division in 1999, has conducted groundbreaking research on semiconductor nanowires – wires more than 10,000 times thinner than a human hair with wide-ranging applications in clean energy and other fields – as well as in nanowire photonics. He has used an array of semiconducting nanowires, combined with bacteria, to capture carbon dioxide emissions and then, powered by solar energy, turn those emissions into valuable chemical products. Yang was a director of DOE’s Joint Center for Artificial Photosynthesis when its northern facility launched at Berkeley Lab in 2011.

Among his many awards, he received the Ernest Orlando Lawrence Award in 2014, DOE’s highest scientific honor, and was named a MacArthur “genius” fellow in 2015. He has perennially been named by Thomson Reuters and other organizations as one of the world’s most highly cited scientists in not one but three fields: physics, materials science, and chemistry.

This year’s AAAS Fellows will be formally announced in the journal Science on Nov. 27, 2020. A virtual induction ceremony for the new Fellows will be held on Feb. 13, 2021.


Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 14 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

Source: Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support contracts directly from Nvidia for the certified systems ar Read more…

By John Russell

XSEDE Supercomputers Square Off Against Ebola

January 26, 2021

COVID-19 may have dominated headlines and occupied much of the world’s scientific computing capacity over the last year, but many researchers continued their work to keep other deadly viruses at bay. One of those, Ebol Read more…

By Oliver Peckham

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support Read more…

By John Russell

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers


Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This