A Scalable Quantum Memory with a Lifetime over 2 Seconds and Integrated Error Detection

November 29, 2022

Nov. 29, 2022 — Quantum memory devices can store data as quantum states instead of binary states, as classical computer memories do. While some existing quantum memory technologies have achieved highly promising results, several challenges will need to be overcome before they can be implemented on a large scale.

Researchers at the AWS Center for Quantum Networking and Harvard University have recently developed a promising quantum memory capable of error detection and with a lifetime or coherence time (i.e., the time for which a quantum memory can hold a superposition without collapsing) exceeding 2 seconds. This memory, presented in a paper in Science, could pave the way towards the creation of scalable quantum networks.

Quantum networks are systems that can distribute entangled quantum bits, or qubits, to users who are in different geographic locations. While passing through the networks, qubits are typically encoded as photons (i.e., single particles of light).

“These qubits need to be routed and processed, both to distribute them to different users and to overcome the distance limitations imposed by the transmission loss in fiber optics,” David Levonian, quantum research scientist at AWS, told Phys.org. “A quantum memory is a small quantum computer that can catch and store quantum bits that are encoded in photons without measuring them, as measuring them would destroy any entanglement that they have. The stored quantum bits can be processed and reencoded in photons if necessary.”

So far, physicists and engineers have proposed several different systems that could act as quantum memory that would enable the implementation of quantum networks, such as dilute atomic gases and rare earth ions embedded in glass. The system created by Levonian and his colleagues relies on so-called silicon-vacancy centers (SiVs). These are quantum bits that are made up of electrons around single silicon atoms, embedded in diamond crystals.

“We build guides for photons that can concentrate them near our SiVs and boost the interaction of light with the electrons,” Levonian said. “At the end of the day, our system resembles the optical modulators that transmit most internet traffic. Like the optical modulators, our quantum memories are switches that either transmit or reflect light depending on whether they’re ‘on’ or ‘off.’ Unlike normal modulators, ours are switched on and off by a single electron, rather than large electrical signals, and can be in a quantum superposition of on and off.”

The researchers’ study had two primary objectives. The first was to explore the possibility of using the magnetic fields of individual nuclei as quantum memories with longer lifetimes (i.e., that can store information for longer). The second was to create a quantum memory that could operate at higher temperatures.

“Our study’s first objective is a common one in our subfield of solid-state quantum memories,” Levonian said. “Basically, electron spins are very convenient for interacting with photons, but also sensitive to magnetic and electric fields. This sensitivity reduces their coherence times, which has motivated researchers to look at ways to transfer quantum information from electrons to more inert nuclear spins. In our paper, we looked at transferring to quantum information to the spin of the silicon atom that forms the SiV.”

To achieve their second objective, that of operating their quantum memory at higher temperatures than those reported so far, the researchers had to devise strategies that would reduce their SiVs’ sensitivity to phonons (i.e., thermal vibrations in the diamond lattice), as phonons can scramble quantum bits encoded in the SiV. Past physics studies predicted that an SiV in a squeezed or “strained” crystal should be less sensitive to phonons.

This prediction was also confirmed by previous experiments, utilizing squeezed SiVs based on unstructured diamond. Levonian and his colleagues wished to reproduce this previously reported effect in their SiV-based quantum memory.

“In the end, we were able to achieve both of our objectives—we were able to catch and store photons at 4 degrees Kelvin, instead of the 0.1 degrees that previous experiments had operated at, and we were able to take the information from photons we had stored on the electron, swap it to the silicon nucleus and store it about 1,000X longer,” Levonian said. “In the field of possible quantum memories, our technology represents a happy medium on many axes.”

The quantum memory created by this team of researchers can “hold on” to a quantum bit for a couple of milliseconds, which is a relatively long coherence time, although not the longest reported in the literature so far. Similarly, it can process local quantum information without errors 99% of the time, which is better than many platforms but worse than the very best.

“Where our memory really shines is in its efficiency at gathering up and storing photons—currently around 50% and soon to improve even more,” Levonian explained. “Another important feature is that it is a ‘heralded’ quantum memory—it gives a signal when it catches a photon. This ends up being crucial for designing efficient quantum networks.”

While the new quantum memory’s ability to operate at 4 degrees Kelvin instead of 0.1 degrees Kelvin (as previously proposed devices) might not seem like a huge step forward, it could have significant consequences for the future large-scale implementations of quantum networks. In fact, cryogenic refrigerators that can bring the temperature down to 4 Kelvin are about 5 times cheaper and 10 times smaller than refrigerators that cool objects down to 0.1K, and can also fit in a server rack.

“Getting to 0.1 Kelvin requires a dilution fridge (the ‘golden chandelier’ that readers might have seen in articles on quantum computing), and the relatively rare and expensive Helium 3 isotope,” Levonian added. “Our success in this study came partly from luck, as we discovered that one of our devices had become quite strained during our manufacturing process, which let us test the temperature resilience this imparted to the SiVs. To use our discovery to build commercial devices, we need to find a way to make strained SiVs 100% of the time, which is something we’re actively working on.”


Source: Ingrid Fadelli , Phys.org

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire