ACM Names Recipients of 2020 ACM-IEEE CS George Michael Memorial HPC Fellowships

October 8, 2020

NEW YORK, Oct. 8, 2020 — ACM, the Association for Computing Machinery, announced today that Kazem Cheshmi of the University of Toronto, Madhurima Vardhan of Duke University, and Keren Zhou of Rice University are the recipients of the 2020 ACM-IEEE CS George Michael Memorial HPC Fellowships. Cheshmi is recognized for his work building a Sympiler that automatically generates efficient parallel code for sparse scientific applications on supercomputers. Vardhan is recognized for her work developing a memory-light massively parallel computational fluid dynamic algorithm using routine clinical data to enable high-fidelity simulations at ultrahigh resolutions. Zhou is recognized for his work developing performance tools for GPU-accelerated applications. The Fellowships are jointly presented by ACM and the IEEE Computer Society.

Kazem Cheshmi

In mathematics, a matrix is a grid (represented in a table of rows and columns) that is used to store, track and manipulate various kinds of data. In computer science, matrices are especially used in graphics, where an image is represented as a matrix in which each datapoint on the matrix table would directly correspond to the color and/or intensity of a given pixel. Matrix computations have a wide range of practical uses. For example, a 3D graphics programmer would hold all the datapoints related to an image as elements of the matrix and might make matrix computations to cause the image to rotate or scale. Matrix computations also play an essential role in computer vision, a branch of AI in which a computer learns to identify an image.

Historically, mathematicians would develop algorithms for matrix computations, and software engineers would write programs to make the algorithms run on powerful parallel computers. However, the emergence of massive datasets has meant that traditional approaches to matrix computation are often inadequate for the enormous matrices, requiring complex algorithms that are increasingly used today in areas such as data analytics, machine learning, and high performance computing.

To address this problem, Cheshmi has developed Sympiler, a domain-specific compiler (a program that translates the source code from a programming language to a code the computer can understand). Cheshmi’s Sympiler generates high performance codes for sparse numerical methods and can process complex matrix computations derived from massive datasets. Sympiler is extended to nonlinear optimization algorithms and performs faster than existing nonlinear optimization tools and is scalable to some of the most powerful high performance computers.  Cheshmi’s work was also accepted to SIGGRAPH 2020, where he  demonstrated how he is using Sympiler in robotics and graphics applications.

Madhurima Vardhan

Despite recent advances, cardiovascular disease (CVD) remains the leading cause of deaths worldwide. In the field of high performance computing, some researchers develop algorithms that are processed on powerful supercomputers to create visual simulations of complex biological processes. These simulations can be useful tools to help researchers better understand how to treat disease.  Currently, a form of simulation called a computational fluid dynamic (CFD) simulation is used in health clinics to provide noninvasive diagnosis of CVDs.

However, existing state-of-the-art CFD simulations do not provide high-fidelity real-time diagnosis of CVDs. These limitations stem from a variety of factors, including problems with model accuracy based on the patient images that comprise the datasets; the extensive memory requirements of these kinds of simulations; the long runtimes on high performance computers that are required for these kinds of simulations; and teaching physicians how to effectively use these simulations.

To address these problems, Vardhan is developing a new kind CFD algorithm using routine patient image datasets that can develop high-fidelity simulations at ultra-high resolutions. Her algorithm is memory-light (that is, using less memory than existing algorithms), and massively parallel (proven to scale on supercomputers). As part of her PhD work, she also completed a study to determine how physicians interact with simulation data, and how physician behavior might be modified in treatment planning.

Keren Zhou

In the last 10 years, graphics processing units (GPUs) have become a critical component in high performance computing systems. For example, five of the top 10 supercomputers in the world today use GPUs to accelerate the performance of applications in various domains. These systems must be designed to avoid common GPU performance problems, and identifying specific performance problems can be challenging.

Working with his advisor John Mellor-Crummey and others, Zhou has taken the lead in developing performance tools for GPU-accelerated supercomputing to help programmers detect program inefficiencies and provide optimization advice.

Their work has already been well received in academia and industry. Zhou and his colleagues have published three papers in top-tier conference proceedings. They are also collaborating with GPU vendors, including AMD, Intel, and NVIDIA; they have submitted a collection of bug reports and offered advice about how to improve their GPU hardware and software measurement interfaces.

About the ACM-IEEE CS George Michael Memorial HPC Fellowship

The ACM-IEEE CS George Michael Memorial HPC Fellowship is endowed in memory of George Michael, one of the founders of the SC Conference series. The fellowship honors exceptional PhD students throughout the world whose research focus is on high performance computing applications, networking, storage, or large-scale data analytics using the most powerful computers that are currently available. The Fellowship includes a $5,000 honorarium and travel expenses to attend the SC conference, where the Fellowships are formally presented.

About ACM

ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting computing educators, researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM strengthens the computing profession’s collective voice through strong leadership, promotion of the highest standards, and recognition of technical excellence. ACM supports the professional growth of its members by providing opportunities for life-long learning, career development, and professional networking.

About SC

SC, the International Conference for High Performance Computing, sponsored by ACM and IEEE-CS offers a complete technical education program and exhibition to showcase the many ways high performance computing, networking, storage and analysis lead to advances in scientific discovery, research, education and commerce. This premier international conference includes a globally attended technical program, workshops, tutorials, a world class exhibit area, demonstrations, and opportunities for hands-on learning.


Source: ACM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response w Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire