ACM Report Outlines Challenges and Promising Interventions to Improve the Engagement and Retention of Students

December 3, 2018

NEW YORK, Dec. 3, 2018 — ACM, the Association for Computing Machinery, has released the highly anticipated report “Retention in Computer Science Undergraduate Programs in the U.S.: Data Challenges and Promising Interventions.” To develop the report, the ACM Education Board recruited a 15-member Retention Committee, drawn from expert faculty from a varied group of university computer programs and was chaired by Chris Stephenson from Google and Alison Derbenwick Miller from Oracle. Among its key recommendations, the report calls for additional research to provide a more nuanced understanding of the dynamics of attrition and retention, and encourages higher education institutions to provide proactive advising to ensure that students are exposed to career opportunities and pathways early in their undergraduate experience.

The computing field is experiencing exponential  growth, both in terms of current and projected job openings, as well as students majoring in computer science (CS). Recently, the U.S. Department of Labor projected that between 2008 and 2018, ¼ million computing jobs opened in the U.S. According to the National Center for Education Statistics, however, in 2015-2016 only 64,405 students received computer science degrees. the main source of preparation for these jobs. Additionally, the US Bureau of Labor Statistics estimates that employment in computer and information technology occupations is expected to grow by 13% in the next decade.

The interest in computing is also reflected in the numbers of incoming students pursuing Bachelor degrees in computing. A report by the Computing Research Association (CRA) highlights that US undergraduate enrollment in computer science is higher today than at any other time. Additionally, the CRA report outlines a 185% increase in CS undergraduates at large institutions since 2006, and a 216% increase of CS majors at smaller institutions during the same period.

Despite these trends, the challenge of retaining more women and people from underrepresented minorities (African-American, Hispanic, Native American) has been a persistent challenge in the field for decades. According to the National Science Foundation’s Engineering and Science Indicators for 2016, despite the fact that women earned 50% of the Bachelor degrees in science and engineering, they accounted for only 17.9% of Bachelor degrees in the computing sciences. Additionally, data from the National Center for Education Statistics (NCES) shows that for CS Bachelor degrees granted at doctoral-granting institutions in 2015, only 8.4% of degree recipients were Latino and only 4.3% were African-American.

“Diversity in the computing field is a vitally important issue,” said Chris Stephenson, the Co-Chair of the ACM Education Board’s Retention Committee and Head of Computer Science Education Programs at Google.  It is a matter of equity and fairness to ensure that all people have access to the broad career opportunities and excellent salaries that a career in computing can offer. At the same time, it is an economic imperative for the United States to have a large and diverse tech workforce. Better solutions are developed by teams with a diversity of people and perspectives. Retention in college computing programs is foundational because if we are not attracting and retaining a diverse population of students in Computer Science programs during the students’ academic careers, we will not see a diverse workforce in computing emerge.”

Added Retention Committee Co-Chair Alison Derbenwick Miller, Vice President, Oracle Academy, “In order to achieve diversity in computing, we also have to grapple with how we define and measure diversity, what we mean by retention, and with empirical data to examine retention that is both limited and messy.  This paper is an important step forward in that it illuminates the existing data and challenges with defining retention, and ultimately encourages more research in this area. Simultaneously, it offers insights into interventions that have been effective, providing opportunities for institutions and stakeholders to continue to work toward increased diversity in computing for today’s students even as more empirical research is done.”

Data Collection and Analysis

Among its recommendations, the report includes several recommendations for improving the availability and consistency of retention data. These suggestions include better research to provide a more nuanced understanding attrition and retention, the implementation of more regular data-gathering on student retention through programs, and an increase in institutional resources to source, aggregate, analyze and report on retention data.

Promising Interventions:

The report includes an overview of specific barriers to retention and some promising interventions to overcome these barriers.

Give Students a Better Understanding of CS 
The report found that many students come to college with misconceptions about computing and may hold invalid stereotypes of computer scientists. The report outlines five possible interventions for this barrier, including using students as near-peer ambassadors in outreach. With this approach, college students who are passionate about computing can help offer outreach programs to younger students.

Meet Students’ Varied Backgrounds

Most introductory CS classrooms have students with varied levels of experience and some students might be intimidated by other students in the class who have more experience. The report outlines several possible interventions for this challenge including offering summer bridge programs for students from groups with historically lower retention rates.

Increase Helpful Collaboration

Helping students learn involves challenging them, but sometimes it is impossible to provide exactly the right level of challenge for all students. The report recommends tactics for integrating collaboration into classes and coursework. Using this approach faculty can help students tackle challenges beyond their current level of ability and ultimately expand their skills. For example, the report notes that pair programming has been shown to promote learning, improve code quality and improve student retention.

Increase Sense of Belonging and Build a Safe Learning Culture  

The report notes that one of the biggest barriers to retention is students’ sense of belonging. Positive faculty-student interactions, teacher assistant-student interactions and student-student interactions can all give rise to a sense of belonging in a community.  The report outlines nine detailed strategies for building a sense of belonging including encouraging affinity groups and mentoring programs.

In addition to its review of available data sources and analysis of current data sets, the report includes three case studies detailing efforts to collect and analyze retention data and implement systemic and sustained retention programs at three diverse institutions: University of California, San Diego, Colorado School of Mines, and Carnegie Mellon University.

The report concludes by emphasizing that there is no silver bullet than can transform an institution into an inclusive and equitable learning environment for all students, and that the work to create an inclusive environment is not a temporary effort. The ACM Education Board Retention Committee notes that because these constructs change very slowly, issues of equity will continue to be pressing in all fields—including computing—and therefore will require continued vigilance and determined effort.

About ACM

ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting computing educators, researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM strengthens the computing profession’s collective voice through strong leadership, promotion of the highest standards, and recognition of technical excellence. ACM supports the professional growth of its members by providing opportunities for life-long learning, career development, and professional networking.


Source: ACM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version Read more…

By Tiffany Trader

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to provide what the companies call the “the highest performance Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

4 Ways AI Analytics Projects Fail — and How to Succeed

“How do I de-risk my AI-driven analytics projects?” This is a common question for organizations ready to modernize their analytics portfolio. Here are four ways AI analytics projects fail—and how you can ensure success. Read more…

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Goog Read more…

By Tiffany Trader

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology cr Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--the study of shapes--seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns. Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This